2016 11th International Conference on Availability, Reliability and Security

Ensuring the Authenticity and Fidelity of Captured Photos Using Trusted
Execution and Mobile Application Licensing Capabilities

Kostantinos Papadamou, Riginos Samaras, Michael Sirivianos
Cyprus University of Technology
Limassol, Cyprus
{ck.papadamou, ri.samaras}@edu.cut.ac.cy, michael.sirivianos@cut.ac.cy

Abstract—Mobile devices, which users habitually carry
along, have become the main data gateway for the majority
of the online services. Any device is able to collect at any time
various types of data through its sensors. At the same time,
modern identification techniques ask users to send photos of
their ID documentation in order to be verified by an online
service. Those photos are captured by the device’s camera
and are considered extremely sensitive. They must be secured
and establish that they will not be modified. This paper de-
scribes a security framework that preserves the authenticity
of a captured photo and ensures that it remains intact while
transferred to a remote server. The key insight is to use
a background service that is tied to the photo-capturing
application and uses secure key storing and cryptographic
computation capabilities offered by the Trusted Execution
Environment (TEE) of commodity Android devices. At the
same time, we leverage Playstore’s Licencing Verification
Library (LVL) to remotely attest the authenticity of the
photo-capturing application at registration time. We have
implemented our framework as an Android application on a
Nexus 5X, which is powered by a Qualcomm processor with
ARM TrustZone Technology. The evaluation of our prototype
implementation demonstrates the efficacy of the proposed
framework in terms of performance overhead and usability.

Keywords-Cryptography; Privacy; Trusted Computing;
Authenticity; Fidelity;

I. INTRODUCTION

In the last decade, Android devices have become the
most popular gadget used in the daily life. According to
YAHOO! Tech in 2014, 52% of U.S. smartphones’ owners
used a handset that runs an Android operating system [2].
Except from an entertainment product, an Android device
is also a channel and a storage of sensitive information.
At the same time, mobile devices are equipped with a
variety of sensors and have become the eyes and ears
of a lot of applications, including Internet of Things
(IoT) applications, by providing their sensing information.
Therefore, the authenticity and fidelity of such information
must be ensured while staying in memory or when sent
to a remote client or server.

Data authenticity and fidelity is crucial for user iden-
tification techniques that employ acquisition of physical
documentation over the Web. Such techniques request
from users to capture a photo of their identity documen-
tation through the camera of their mobile device. The
authenticity and fidelity of such photos must be preserved
and the service performing the identity verification must be
able to determine whether the received photo is authentic.
This is because a malicious user may want to upload a

978-1-5090-0990-9/16 $31.00 © 2016 IEEE
DOI 10.1109/ARES.2016.83

706

modified identity documentation photo pretending to be
someone else or use it for various other purposes.

Any digital data can be assumed to be authentic if we
can prove that it has not been corrupted or modified after
their creation. Especially in the area of user identification,
where a strict sense of data authenticity is applied, any
processing means corruption. The data is considered au-
thentic only if is the outcome of the acquisition process
of a real-world document.

In this paper we focus on ensuring the authenticity
and fidelity of captured photos for user identification
techniques and we introduce a security framework for
solving the aforementioned problems. We present the
design and a prototype implementation of our framework
that exploits the capabilities of the Trusted Execution
Environment (TEE) offered in commodity mobile devices.
We use the TEE to store cryptographic keys and to perform
cryptographic operations in the trusted environment of the
mobile device. Our primary goal is to empower the remote
service with the ability to determine about the authenticity
of the received photo and to decide whether to accept it
or not. The key insight is to use a background service that
is tied to the application and performs all the sensitive
operations.

Performing cryptographic operations, such as RSA sig-
nature in our case, means that you have the private key and
you share a public key with the verifier of the signature. At
registration time our framework creates an RSA key-pair
using the Android KeyStore system and sends the public
key to the remote server. Subsequently when a photo
has been captured, our background service intervenes and
reads the source photo. Once the background service has
done so, it computes and signs the hash of the photo with
the private key that resides in the TEE. When the user tries
to submit the photo, the application allows the background
service to handle the submission. The background service
takes the photo that the user tries to submit, computes
a hash of it and compares it with the hash computed
from before. If the two hashes match then the background
service submits it to the server along with the signature.
The server uses the public key for the corresponding user
to verify the signature and to decide whether to store or
discard the photo.

In order to prevent unauthorised use of our application
and ensure that the server has received the correct public
key, for each user, we use the Licensing Verification
Library (LVL) offered by Google [5]. When a user tries

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



to register a new account, we perform the License Verifi-
cation. To this end, we have modified the LVL in a way
that the response from the Google Play Licensing server
is forwarded to the server so we can perform server-side
license validation for the application. Thus, the server can
ensure that the public key received from the client appli-
cation is the correct one. In our approach, an application is
considered licensed only if it has been downloaded from
the Google Play Store and it is a compliant implementation
of our framework. In our approach we assume that the user
does not have root privileges on her device and no other
application that runs on the same device can access the
internal storage of our application or use the private keys
stored by our application in the TEE. The application may
also run securely on rooted devices under some conditions
that we will describe in the discussion section.

We have implemented a prototype of our framework
for Android on a Nexus 5X, which is powered by a
Qualcomm processor with the ARM TrustZone Tech-
nology. Our custom registration and photo capture and
submission processes have a reasonable execution time
without affecting the usability of the application. A short
evaluation shows that our approach is feasible and can
ensure authenticity and fidelity of captured photos with
an acceptable performance overhead.

The rest of the paper is organised as follows: Section II
describes background information on the technologies we
are using. Section III describes the related work in the area
of data fidelity and authenticity. Section IV provides an
overview of our proposed framework while Section V we
define our trust and threat model. A detailed description of
the design and the prototype implementation is provided
in Sections VI and VII accordingly. The evaluation of
our framework is provided in Section VIII. In Section IX
we discuss our future work and offer recommendations to
devices manufacturers that can make our framework more
secure. Last, Section X summarizes our conclusions.

II. BACKGROUND
A. Trusted Execution Environment

The Trusted Execution Environment (TEE) is a secure
area on the main processor of a smart device [10].
The TEE offers isolated secure execution of authorized
security software and can ensure that sensitive data is
stored, processed and protected in a trusted environment
isolated from the rich OS environment. Furthermore, the
TEE is embedded in the processor of the device during
manufacture and executes trusted applications built in by
device vendors as well as trusted applications installed by
users.

B. ARM TrustZone Technology

ARM TrustZone Technology is a System On Chip
(SoC) approach to secure the whole system through CPU
[1]. The SoC approach can build a root of trust on mobile
devices. A software that is executed in CPU is either
in a “trusted world” or a “non-secure world”. To switch

707

between those two worlds, TrustZone either uses micro-
controllers or application processors. Every application
that resides in a “trusted world” has its own secure
memory, transactions on a bus, and interrupts living in
the SoC.

1) Cortex-A processor: This ARM processor is creating
a Trusted Execution Environment by securing the boot
and the OS procedures of the device. This TEE is used
for authentication, cryptographic operations and secure
memory access.

2) Cortex-M processor: This ARM processor has the
same functionality as the Cortex-A but it can switch be-
tween the two worlds by using a hardware based approach,
which is faster and with less power cost.

As described in GlobalPlatform [10] and explained by
Brian McGillion et al. [9], a device’s OS can be separated
in two distinct environments:

a) The Rich Execution Environment (REE), where all
regular applications are executed. Those application are
called client applications and do not require secure exe-
cution.

b) The Trusted Execution Environment (TEE), as de-
scribed above is a trusted environment in the processor
where all the critical operations of the device is executed.
Such critical operations is Cryptographic key generation
and RSA encryption and decryption.

C. Android KeyStore System

Cryptographic operations that reside in the TEE can
be utilized by using the Android KeyStore System [3].
Android KeyStore lets you store and protect your cryp-
tographic keys in a secure trusted environment. Once the
keys are in the KeyStore, they can be used but the key
material remains non-exportable. Those keys can be used
for any cryptographic operation like signing and verifying
data and can be retrieved using an alias that is set up during
the creation of a key. The generated alias are tied to the
application and cannot be used by any other application
running on the device neither can see them. This allows
the applications to take an authorization on the key that
cannot be changed once those keys have been created.
The cryptographic keys are available in plain text only
inside the TEE where the operations are taking place. This
ensures the security of a cryptographic operation.

D. Google Play Licensing Service

Google Play Licensing is a network-based service of-
fered by Google to Android Developers [5]. It allows any
application that has implemented a License Verification, to
query the trusted Google Play licensing server in order to
determine whether the application is licensed to the current
device and user. A user is considered to be licensed if
she has purchased the application or has downloaded the
application from the official Google Play Store. License
Verification is most common to be used for paid appli-
cations but it can also be used by free applications that
wants to prevent the unauthorized use of these application.
We refer to authorized use of an application only if that

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



application has been downloaded from the Google Play
Store.

III. RELATED WORK

Even thought quite some research has been done on
ensuring data authenticity and fidelity of sensor data in
mobile devices, not all of them are using the TEE. In
addition to that, from those that make use of the TEE
none of them is emphasizing in the preservation of the
authenticity of photos without accepting any modifica-
tions. Anyone can claim that requiring the users to upload
unmodified data is not practical; however, in the area of
user identification this is crucial.

Dua et al., proposed a solution for ensuring the integrity
of sensor data. This solution is to equip devices with
a Trusted Platform Module (TPM) that allows them to
sign their sensor readings and attest their integrity [6].
Despite the fact that this approach can solve our problem,
requiring modifications or additions in the existing hard-
ware architecture is not straight-forward and may not be
accepted by device manufacturers for cost and portability
reasons. Instead of requiring hardware modifications, we
propose the use of the existing hardware architecture
taking advantage of the TEE that is offered with the same
success rate in attesting data integrity.

YouProve, introduced by Gilbert et al., allows untrusted
applications to control the fidelity of data they upload
and services to verify that the meaning of source data is
preserved [8]. They analyze the derived data and generate
statements comparing the content of a derived data item to
its source. Instead, in the problem we are trying to solve
there is a more strict view of data authenticity, where no
modification of any type is allowed on the source data.
We are also take advantage of the trusted environment
of the device, as YouProve does in a different way, and
we empower remote services to determine whether the
received data matches its source. In addition, we do not
require the client to perform any complex analysis on the
data and this minimizes our power costs. Our analysis of a
photo is almost instant in contrast to YouProve’s approach.

In 2010, Gilbert et al. introduced an architecture for
trustworthy sensing on mobile devices that utilizes Virtual
Machines (VMs) and a Trusted Platform Module (TPM)
[7]. In the proposed approach only applications that are
considered as trusted, for modifying sensor data, are al-
lowed and are encapsulated within a VM. Any application
that is not considered as trusted to modify source data it
cannot be used by users. In our framework our scope is
also to verify the authenticity of the source data utilizing
trusted software and hardware but without allowing any
fidelity reduced actions.

Saroiou et al. described two architectures for mak-
ing sensor readings trustworthy by signing them in the
capture device [11]. The main difference between the
two architectures is that the one does not require any
additional hardware except a TPM. The first one embeds
signing hardware in the sensors making them able to
sign their readings so that their is no need for verifying

708

services to make any trust assumptions about a device’s
software. The second one exploits the TPM and VMs in
order to minimize the Trusted Computing Base (TCB) by
separating sensor drivers from all the other functionality.
This approach can be adapted in our problem but instead
of requiring hardware modifications, we propose to sign
sensor readings utilizing the TEE.

IV. APPROACH OVERVIEW

Our goal is to design a framework that can ensure to
a remote service that the provided photo has not been
modified and is the same photo captured from the device’s
camera and at the same time the remote service can verify
the authenticity of the received photo. In this section
we briefly describe our proposed framework from the
time where an application that implements our framework
is downloaded from the official Google Play Store and
installed in the mobile device to the time where a captured
photo is received and verified by a remote server.

At first we assume that the client side is not compro-
mised and the user has no root privileges in her device.
The first thing a user has to do is to download the
application from the Google Play Store. In order to use
the application and capture photos, she has to create an
account to the verifying service. At the time of registration
we use the Android KeyStore trusted service to create an
RSA key-pair in the TEE of the device, which will be
used by the client to sign the source photo and by the
service to verify the received photo. For this purpose, we
also take advantage of the License Verification Library
(LVL) offered by Android OS to verify that the application
has been downloaded from Google Play Store and that
the public key of the RSA key-pair will be successfully
submitted to the remote server. We have modified the
standard license verification process in a way that the
response from the Google License verification server is
forwarded to the server along with our public key and the
necessary information for the registration.

The server receives this information and before storing
them, it verifies the license verification response the same
way as it is typically happen in the device. If the verifica-
tion is successful then it accepts the registration and stores
the public key for the corresponding user.

The key insight of our approach is a background
service that is tied to the application and undertakes all the
critical operations. When a user captures a photo we
store the photo in the internal storage of the application.
Then the background service reads the photo and
computes and signs the hash of that photo using the
private key that is store in the TEE. The sign operation
is secure and takes place in the TEE where the key
resides.

When the user tries to submit the photo, the background
service intervenes to verify the authenticity of the photo
and to submit it. First, the service computes the hash of the
photo that user tries to submit and compares this hash with
hash computed before. If the two hashes match then the
service submits the signature and the photo to the server.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



One of the most important contributions of our frame-
work is the ability of the remote service to verify the
authenticity of the received photo. When the data has been
received, the server computes the hash of the photo with
the same hash function as the client side and using the
public key for the corresponding user verifies that the
signed hash matches the hash of the received photo. If
this is successful, then the photo is stored otherwise it
is discarded and the client is informed to submit another
unmodified photo.

V. TRUST AND THREAT MODEL

In order to evaluate the security guarantees that our
proposed framework is intended to offer, we define a threat
model with two types of attackers. In the area of user
identification techniques it is more likely that the attacker
is the device owner himself who wants to fool the verifying
service by providing a modified photo pretending someone
else. It is acceptable that an average user is not a technical
expert. Additionally, the minority of the Android users
have root privileges on their mobile device.

An attacker’s goal though is to compromise an ap-
plication and modify its content using a malicious tool
in order to operate the way she prefers. We assume
that this is possible and that a modified version of our
application has been created and is accessible by anyone
who wants to act maliciously. In this section we discuss
the different types of attackers we have to defend against
and the capabilities of each one and how we prevent each
type of malicious action. The assumptions we have made
regarding a device’s hardware and software configuration
are also discussed.

A. Root Attacker

A malicious user with root privileges on his device who
is able to run applications under root permissions and
modify the file system. A user with technical experience
on Android devices.

1) Accessing the content of the Legitimate Application:
A root attacker can access the contents and the data
of the Legitimate Application by executing super user
(su) commands using the Android Debug Bridge. This
can also be done using a malicious application that has
root permissions and executes shell commands. In such
incidences there is not a lot you can do to defend against
as soon as a user with root permissions can access and
modify almost everything in her device. However, we
made some propositions for rooted devices that can secure
our framework such circumstances. Those propositions are
discussed in Section IX.

2) Using the Key Aliases: A root attacker can see the
aliases created by the legitimate application by adopting
the User ID (UID) of the legitimate application to her
malicious application. Then she can execute su commands
to list all the key aliases. The malicious application will
then be able to use the key to sign its preferred data
and send it to the server. This is the main problem that
our framework faces and can be solved by having the

709

background service, that takes the original photo and
secures it, to run in the TEE as a trusted service. This is
further explained in the discussion section of this paper.

3) Is the RSA private key visible and accessible to the
attacker?: As soon as the attacker has root permission, he
can use the key as described above. However, according
to the official Android KeyStore documentation [3], the
key material can be used but it cannot be extracted from
the TEE neither can be viewed. Due to the fact that you
have to know the alias of the key in order to use it, this
problem can be solved with the same way as the previous
one.

Even if the cryptographic keys can be used by an
attacker in a rooted device, we chose to store those keys
in the Trusted Execution Environment to reduce the attack
surface in case of side channel attacks in the normal zone
of the device.

B. Non-Root Attacker

A malicious user who wants to exploit the vulnerabili-
ties of the legitimate application using another malicious
application created by a technical expert. This application
imitates the behavior of the Legitimate Application and
creates a communication channel with the server to submit
modified data.

1) Manual install of a malicious application: A ma-
licious user can manually install a malicious application
that imitates the legitimate application. This application
is trying to communicate with our server and submit
modified data on behalf of the legitimate application.
All the aspects of this threat has been considered. First,
by using the License Verification Library (LVL) we can
ensure that the server will accept and store public keys
only by the legitimate application. Next, by signing the
captured photo in the client, the server is able to verify
the authenticity of the received photos and discard any
photos received by the malicious application.

2) Download a malicious application application from
Google Play Store: A malicious user downloads a ma-
licious application that imitates the legitimate application
from the Google Play Store. Such an application can easily
be uploaded to the Google Play Store since it is considered
as malicious only by us. Anyone can upload an application
to the store with almost no restrictions. However, this
threat can be easily mitigated. When such a malicious
application tries to communicate with our server we will
detect it and request its removal from the Google Play
Store.

3) Using a malicious application that imitates the Le-
gitimate application: A malicious user may try to register
to the remote server using a malicious application that
imitates the legitimate application. Such an application
has been installed manually to the deice. By registering
to the remote server with his preferred public key, the
malicious user can then submit modified photos to the
server that will be considered as valid. This threat is
the reason that forced us to perform server-side license
response validation during the registration process.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



C. Trust Assumptions

As stated in Section IV the root of trust for each client
application is the TEE where the keys are created and
maintained. If the TEE is compromised then an attacker
can use the keys and sign modified photos. Nevertheless,
this can be achieved only if the attacker has root privileges
on his device.

In this subsection we describe the trust assumptions that
we have made regarding a device’s hardware and software
configuration and are listed below:

o The most important assumption that we have made
during the design of our framework is that the mobile
device where the legitimate application runs is not
rooted.

According to the Android Developers documentation
the internal storage of our application is private and
can only be accessed by our application and the
background service and no other service or applica-
tion that runs on the normal world can access this
storage [4]. This assumption presupposes the first
assumption that the device is not rooted. The same
applies for the TEE and the RSA key-pairs created
by our application.

According to the Terms and Policies of Google for
License Verification, no other applications can forge
and use the Licencing of the Legitimate Application
in order to fool the server and submit a public key
of his choice during the registration process.
Regarding License Verification process, we assume
that the Google Play Licensing server is trusted and
will always respond with the appropriate way in a
license verification request.

In the case that a malicious application identical to
the legitimate application is uploaded on the Google
Play Store and tries to communicate with our remote
server we assume that we will detect it and ask its
removal from the Google Play Store.

Finally we assume that the communication channel
between the legitimate application and the remote
server is based on the TLS protocol and is trusted
and no one can intervene. Additionally, the remote
server will not allow two TLS connections from the
same device at the same time. When this is noticed
the server will cancel both and mark the device as
untrusted.

VI. DESIGN

In this section we analyze the design of the proposed
framework that allows mobile devices and remote services
to ensure the authenticity and fidelity of captured photos.
The design of such framework can be divided in three
parts that are considered equally critical by us and need
to be designed carefully. The first part is to ensure the
secure installation of the application that implements our
framework. The second part is to enable the remote server
to decide whether to trust or not the client application
and this is achieved using the License Verification Library
during the registration of a user to the remote service. Trust

710

Google License Server Remote Server (Verifier)

6. Evaluate Received Information 12. License Validation

13. Store the public key

0

11. License Verification Response,
User Credentials and RSA pubKey

|
Device ‘

8. Licensing
Response

7. Send Response

0

5. App and User
Information

Application

9. License Validation

10. Create RSA pair for data signing

3. Bind with LVL 1. Initialize License Verification

v

LVL

4. Collect more App Information 2. Collect App Information

KeyStore Lib | Internal Storage
T I
10.1 Gen_RSA_Keys 10.2 Gen_Alias
|
Trusted Execution Environment

Google Play Store App

Figure 1. App License Verification and User Registration

means that the server and the application will underpin a
secure communication with each other and will sustain
it in the future. The third one, which is the main part
of our framework, is to ensure that the captured photo
has not been modified until is submitted to the remote
service. As mentioned before, the key insight in our
design is a background service that is tied to the
application and performs all the sensitive operations.

Those three parts can ensure that the remote server
will receive the authentic photo captured by the camera
and in the case that the photo has been modified, the
remote service will be able to verify the authenticity of
the received photo.

A. Attest the authenticity of the photo-capturing Applica-
tion using LVL

A developer creates an application and uses her Google
Play Developer Console to upload the Android Applica-
tion Package(APK) to the Google Play Store. As soon as
the application is using the LVL [5], Google will provide
the developer a public key that she will inject into her
Application. As mentioned in Section II, a free application
can use the LVL to enhance the security of the application
against an unauthorized one.

When requesting License Verification, our application
must collect its code’s hash, its UID and its package
name. Then our application creates a secure Inter Process
Communication(IPC) channel with the Google Play Store
app and passes the collected information. The Google
Play Store application collects all the other necessary
information including the device ID and and sends the
license verification request to the Google Play Licensing
Server. The Licensing server then processes the request
and responds back with the licensing status of the ap-
plication. The Play Store app receives the response and
passes it through the IPC to the application. The licensing
response, which is signed with the private key of the
Google Licensing Server, can now be verified using the
injected public key in the application.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



Remote Server (Verifier)

11. Verify signature and store
photo

™

10. Signed Hash, Photo

Device

Camera Application Background Service

5. Read captured photo
3. Image capture
4\ 6. Compute and sign photo hash
4. tured phot
Captured photo 7. Wait for submission
2. Image capture request
Application ‘ 9. Submit signed hash and photo
1. Image capture intent < Binder _ Android KeyStore
| T
8. Submit photo
Lomitp 6.1 Photo hash 6.2 Signed photo hash
Internal Storage < V ‘

| Trusted Execution Environment |

Figure 2. Securing Image Capture using our Background Service

B. Registration and License Verification

After receiving a licensed response, from Google Play
Licensing Server, the application can proceed to the reg-
istration of the user. The user will provide all the required
information, like username and password. The application
will then generate an RSA key-pair with a unique alias,
PK and SK. The generation of the keys is executed by a
background service using the Android KeyStore system
and the keys are stored in the TEE. The private key
material, SK, is never exposed outside the TEE but can
be utilized using the Android KeyStore System [3].

Then, all the user’s information along with the license
verification response and the created public key are send
to the remote service in a registration request. Once
the remote service has received the request, it performs
server-side license response validation as it is typically
happen in the application. If the license response is valid
then the remote service will register the user with the
provided information and will store the public key. If the
license response validation returns a false status, then the
server realizes that the registration request was send from
an unauthorized application and the registration will be
canceled. A complete view of the registration process and
the use of the LVL is shown in Figure 1.

C. Secure Photo Capturing

This is the main part of our framework and includes the
most critical operations. This procedure is a co-operation
of the application and the remote service with the common
goal to ensure and verify the authenticity and fidelity of
a captured photo. The application is responsible to ensure
that the captured photo will not be modified before it is
submitted to the server. In our approach, even the slightest
modification is not tolerated. A complete view of the photo
capture process is shown in Figure 2.

As in the registration process, a background service tied
to the application, executes all the sensitive operations. We
have extended the Binder class to provide our application
the exclusive use of this background service. This exten-
sion prevents any other applications or separate processes

711

from using the background service. Our background ser-
vice oversees the whole process and takes actions when
needed. Below we describe the whole procedure step by
step.

At first the user is requested to capture a photo. Using
an IMAGE_CAPTURE intent we enable the use of the
device’s camera. When the photo is captured the result
photo is returned to the application through the intent. At
this moment the background service captures the photo,
computes a hash from the photo data and signs this hash
using the private key that was stored in the TEE during
registration. All the cryptographic operations are executed
in the TEE. By executing the sensitive operations in the
TEE we protect our framework from software attacks.

The captured photo resides inside the internal storage
of the application until it is captured from the background
service. The internal storage gives the application private
access to its content and in a non-rooted device no other
applications can access it. However, it is important to
mention that a root Attacker can easily modify those
contents.

At the end, when the user tries to submit the photo to
the remote service, the background service intervenes and
undertakes the submission of the photo. Before submitting
though, the background service takes the photo that the
user wants to submit and computes its hash. This hash
is then compare=0d with the signed photo hash stored
from before. If the two hashes match then the photo along
with the signed hash are submitted to the remote server by
the background service. Otherwise if they do not match
then the background service cancel the submission process
and informs the user. The only way for a root Attacker
to be able to submit such modified data is completely to
change the way that our background service works. This
vulnerability can be mitigated in a way that is described
later in the Section IX.

VII. IMPLEMENTATION

In this section, we describe our prototype implemen-
tation on a Nexus 5X with Android 6.0 installed. We
have implemented our security framework as an android
application using classes introduced in Android 4.3(API
level 18) contained in the Android Keystore System.
Nexus 5X has a Qualcomm Snapdragon 808 processor.
Snapdragon 808 processor is based on a combination
of ARM Cortex-A53 and Cortex-AS57 processors. This
processor uses ARM TrustZone Technology [1], a hard-
ware based security designed as a System on Chip (SoC).
ARM TrustZone technology Android Keystore Sytem has
its cryptographic generated keys stored inside a Trusted
Execution Environment. In such environment the private
keys can be used but the key material is never exposed
outside the trusted environment. The cryptographic oper-
ations like signing and verification of signatures are also
executed in a tamper resistant environment.

Our prototype implementation can be divided in two
main parts. The first part is the one that we consider as
trusted. That is our background service, which encapsu-

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



lates only the critical functionality of our framework such
as cryptographic key generation and signing of the hash of
the photo. The background service is implemented in Java
with less than 200 lines of valuable code. The second part
contains the majority of the application’s functionality,
which is not considered as critical. Such functionality is
the Graphical User Interface (GUI), the camera capture
request, the registration and log-in services. Regarding
the registration process, all of its sensitive operations
(e.g., generation of the RSA key-pair) are implemented
in the background service. This part of the applications is
implemented in less than 1000 lines of Java code.

Our remote server, which represents the remote service
has a LAMP stack installed with Ubuntu 14.04 LTS
operating system, Apache v2.0, MySQL server 5.5.49 and
PHP 5.5.9. The photo authenticity verification, public key
storage, registration and the Google Licensing response
validation services are all implemented in almost 600 lines
of PHP code.

VIII. EVALUATION

In the context of mobile devices, performance overhead
and power costs are the most important aspects that need
to be considered when proposing changes to the software
stacks or when changing a typical procedure like our
framework does with the photo capturing process.

In this section we evaluate whether our security frame-
work can successfully ensure the authenticity and the
fidelity of a captured photo with the minimal extra over-
head. At first, we examine if a malicious application
can be detected by the remote service with the server
side license response validation. We also verify if the
client application and the remote service can successfully
determine whether a photo has been captured from a
device’s camera without being modified. In the end we
also evaluate the performance overhead of our framework.

A. Feasibility Evaluation

For this purpose we have implemented two Android
applications. The first one has been implemented with
the specifications described in Sections VI and VII and
we will refer to this application as the legitimate. The
second one is an application that imitates the legitimate
application and tries to perform license verification in
order to register with its preferred public key and submit
modified photos to the remote service. We refer to the
second application as the malicious application and we
assume that in a real world scenario such applications
will be installed manually by malicious users. We verify
registration and photo capturing processes separately.

1) Registration and License Verification: As described
in Section IV, our registration process is one of the two
most critical procedures in our framework. This is because
during registration we also create a cryptographic key-
pair that will be then used to sign the captured photos.
Furthermore, we transfer and store the public key to the
verifying service. That key will be used by the service to

712

verify the authenticity of the received photos. The goal of
this evaluation is to ensure that the registration process is
successful and that the correct public key is transferred to
the remote service. Additionally, it is necessary to evaluate
that our framework can prevent a malicious application
from registering and submitting its own public key to the
remote service.

At first we tried to register with the legitimate appli-
cation. Since it is the legitimate application the license
verification on the device was successful. As soon as the
license verification is successful on the client side and the
cryptographic keys has been created, the application sub-
mits to the remote service all the necessary information.
The license response validation on the server side was also
successful and the public key was stored. We repeated the
registration process for 10 times and the registration was
always successful.

Subsequently, we tried to register with the malicious
application. As soon as the application is not published
at the Google Play store then the Google Play Licensing
server will not respond to any license verification request
from this application and the license verification cannot be
performed. We tried to submit the registration information
along with the preferred public key but without the license
verification response but the remote server denied to
perform the registration because of the missing license
response.

We have not tested our framework with a malicious
application that is published in the Google Play market and
tries to communicate with our remote service because such
applications can be detected and removed from Google
Play as described in Section V.

From the evaluation result we can derive that the
server-side license response validation can detect and
prevent malicious applications from registering to our
remote service.

2) Photo capture and submission: Despite the fact that
a secure photo capture process is based on a secure regis-
tration, it is the most crucial process in our framework. We
have evaluated this process with both the legitimate and
the malicious application. We used a non-rooted device
to perform the evaluation since we already know that in a
rooted device a malicious application can use a private key
created by the legitimate application to sign and submit a
modified photo.

In our legitimate application, all sensitive functionality
is performed by the background service. At first we
evaluated the photo capturing process with the legitimate
application. We captured a photo using the camera of
the device and then we tried to submit that photo to the
remote service. At the submission time, the background
service sent the captured photo along with the signed
data to the remote service. Then the service verified the
received photo and signature using the public key for the
corresponding user. We have also repeated this procedure
for 10 times and it was always successful.

In addition to that, we have added an extra method to

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



the legitimate applications that modifies the photo before
submission. We have used this method to evaluate whether
our application can detect the modified photo and prevent
its submission to the remote service. This is detected from
the background service when comparing the hash of the
captured photo with the hash of the photo that the user
tries to submit.

In the end we tried to evaluate whether the remote
service can detect modified photos and discard them
using the malicious application. First we used a malicious
application that tries access the private key created by
a legitimate application in order to sign and submit a
modified photo to the server. This attempt ended before
submitting the photo because the malicious application
failed to access and use the private key that was created by
another legitimate application. Besides that, we modified
the malicious application in a way that it creates its
own cryptographic key-pair to sign and submit a photo
not captured by the camera. For evaluation purposes we
assumed that the user has already registered with the
remote service using a legitimate application. When we
tried to submit the photo, the remote service was able to
detect and discard the modified photo because the public
key used by the service to verify the authenticity of the
received photo did not match the private key used by the
malicious application to sign the photo.

B. Performance Evaluation

Since our proposed framework is intended to run on mo-
bile devices, it was important to evaluate its performance
overhead. To do that we deployed our implementation on
a Nexus 5X and a Samsung Galaxy S6, which both has a
processor with ARM TrustZone Technology and a Trusted
Execution Environment. All performance tests were run
20 times while the device was at normal state with only
our application running. We have measured the execution
time while executing the two most critical operations in
our framework: a) registration; and b) photo capturing.

1) Registration process: When evaluating the registra-
tion process we have measured the time needed for the
license verification request sending and response receive
separately from the other registration processes. This is
because between those two is the time that the user needs
to add her personal details requested for the registration.
The average time for the license verification request is
654 ms. The other registration processes including key
generation and registration with the remote service takes
an average time of 3000 ms to be completed. Thus, taking
into account the network latency, we can say that the
performance overhead that our framework adds to a typical
registration process is negligible.

2) Photo capture and submission processes: At the
end, we measured the execution time of the photo capture
process separately from the submission process because
the time between them must not be considered. This is
because the time between those operations depends on the
time the user wishes to submit the photo. For the photo
capture process we have measured the extra overhead that

713

our framework adds to the typical photo capture process.
This extra overhead is the time needed for our background
process to take and sign the captured photo and this takes
an average time of 284 ms. Again, this extra overhead
is acceptable and it does not affect the usability of the
application.

Next, we measured the execution time for the photo
submission process. This process includes the submission
and store of the photo to the remote service and the
authenticity and fidelity validation on both the mobile
device and the remote service. The average time for this
is 780 ms.

Summarizing, we believe that the minimal extra over-
head that our framework adds over the typical procedures
of photo capturing and submission are negligible and well
worth the added authenticity and fidelity guarantees.

IX. DISCUSSION

In this paper we have presented a framework for
ensuring authenticity and fidelity of captured photos in
mobile devices. Our approach can be considered as a
demonstration of how the Trusted Execution Environment
is typically used on mobile devices. We use the Android
KeyStore service to create and store cryptographic keys
in the trusted environment of the device and to perform
cryptographic operations. In contrast to other applications,
in our framework the attacker is the device owner itself.
Thus, having the trusted environment executing secure
cryptographic operations is not sufficient for our scope.

As mentioned in Section V, our framework can success-
fully ensure the authenticity and fidelity of captured photos
if the user does not have root privileges in his mobile
device. Additionally, even malicious applications that run
on non-rooted devices trying to imitate our application
can also be detected with the server side license response
verification. However, this procedure can be even more
secure if the Google Play licensing server sends the
response, for a license verification request, directly to our
trusted remote server that performs the validation of the
response.

Unfortunately, with the current structure of Android
OS it is not possible to prevent a user from getting
root privileges on his mobile device. However, in online
identity verification it is important that such a framework
can always ensure the authenticity of a captured photo
even if the device is rooted.

Despite the fact that rooted devices are the minority,
in our research we have also take them into account and
there are some propositions that we have made so that our
framework can successfully run in rooted devices. The first
one has to do with the way that our background service
reads the captured photo. Storing and reading the captured
photo from the internal storage of the application is only
secure if the user does not have root privileges. Thus, a
better way that consists our framework secure, regardless
of the state of the device, requires modifications in the
existing camera service implementation. We think that
modifying the camera service so that it also reports the

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



source data directly to our background service can prevent
a root attacker from modifying the captured photo before
our background service reads it.

The background service is the one responsible to create
and use the RSA key-pair and to perform the crypto-
graphic operations. In a non-rooted device, those keys
are protected by the TEE and are accessible only by our
background service, but in a rooted mobile device a mali-
cious application can access and use those keys. In order
to prevent unauthorized use of those keys we propose to
include our background service in the TEE of the mobile
device as a Trusted App [1]. In this way the remote server
will be able to directly talk to our Trusted Application and
know that the compared signed hashes of our captured
photos were not modified just before they were being
signed. Furthermore all the cryptographic key alias related
to our application will only be accessible from our Trusted
Application. This transition is computationally sustainable
because the cryptographic operations are already being
done in the TEE, however they are exposed as soon as
they are bound with a client application, as discussed in
Threat-A.2.

The Trusted Application will be able to provide authen-
tication to a remote service, not only for the captured
photos, but also to various sensitive data captured from
the sensors of a device. This can be achieved by slightly
modifying our current implementation.

The aforementioned propositions are considered by us
as future work but the inclusion of our background service
in the trusted environment of the mobile device it also
requires an approval from processor vendors.

X. CONCLUSIONS

This paper has presented the design and the implemen-
tation of a security framework that exploits the capabilities
of the TEE offered in commodity mobile devices, in order
to ensure the authenticity and fidelity of sensed data. Such
framework enables a remote service to determine whether
the received data is the real outcome of an acquisition pro-
cess and has not been modified. The key to our approach
is a background service that is tied to the application. This
background service reads the captured photo just after its
creation and uses cryptographic operations in the TEE of
the device to preserve the authenticity of the photo until its
submission to a remote server. Based on our evaluation,
our proposed framework appears to be feasible and its
performance overhead is negligible.

Our framework can also be extended to support any type
of sensed data like video and audio. Our future work will
be based on extending our support to other types of data
and making the proposed framework able to ensure data
authenticity and fidelity in rooted devices as described in
the discussion section.

XI. ACKNOWLEDGMENT

This research has been fully funded by the European
Commission as part of the ReCRED project (Horizon
H2020 Framework Programme of the European Union
under GA number 653417).

714

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

REFERENCES

ARM. Trustzone technology. http://www.arm.com/
products/processors/technologies/trustzone.

Vera H-C Chan. By the numbers: iphone vs
android. https://www.yahoo.com/tech/by-the-numbers-
iphone-vs-android-97842025474.html, 2014.

Android Developers. Android keystore system. http:
//developer.android.com/training/articles/keystore.html.

Android Developers. Android storage options - inter-
nal storage. http://developer.android.com/guide/topics/data/
data-storage.html#filesInternal.

Android Developers. Google play licensing overview.
http://developer.android.com/google/play/licensing/
overview.html.

Akshay Dua, Nirupama Bulusu, Wu-Chang Feng, and Wen
Hu. Towards trustworthy participatory sensing. In Pro-
ceedings of the 4th USENIX Conference on Hot Topics in
Security, HotSec’09, pages 8-8, Berkeley, CA, USA, 2009.
USENIX Association.

Peter Gilbert, Landon P. Cox, Jaeyeon Jung, and David
Wetherall. Toward trustworthy mobile sensing. In Pro-
ceedings of the Eleventh Workshop on Mobile Computing
Systems &#38; Applications, HotMobile "10, pages 31-36,
New York, NY, USA, 2010. ACM.

Peter Gilbert, Jaeyeon Jung, Kyungmin Lee, Henry Qin,
Daniel Sharkey, Anmol Sheth, and Landon P. Cox.
Youprove: Authenticity and fidelity in mobile sensing. In
Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems, SenSys 11, pages 176-189,
New York, NY, USA, 2011. ACM.

Brian McGillion, Tanel Dettenborn, Thomas Nyman, and
N. Asokan. Open-tee - an open virtual trusted execution
environment. CoRR, abs/1506.07367, 2015.

Global Platform. Trusted execution environment guide.
http://www.globalplatform.org/mediaguidetee.asp.

Stefan Saroiu and Alec Wolman. I am a sensor, and i
approve this message. In Proceedings of the Eleventh
Workshop on Mobile Computing systems and Applications,
HotMobile *10, pages 37-42, New York, NY, USA, 2010.
ACM.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on July 02,2023 at 07:27:30 UTC from IEEE Xplore. Restrictions apply.



