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Abstract. In blockchain systems, similar to any distributed system, the
underlying network plays a crucial role and provides the infrastructure
for communication and coordination among the participating peers. As
a result, the properties of the network define the level of security, avail-
ability, and fault tolerance within a blockchain system. This study aims
to improve our understanding of the structural properties of peer-to-peer
overlay networks that underpin blockchain applications. Our objective is
to gain insights into the security and resilience of these systems. By ana-
lyzing seven distinct blockchain overlay networks and evaluating a com-
prehensive set of graph characteristics, we draw important conclusions
about their overall robustness. Our findings reveal that major blockchain
networks have vulnerabilities that make them susceptible to exploitation
by malicious actors. Furthermore, despite relying on similar protocols for
node discovery and network formation, we observe dissimilar character-
istics among these blockchains.
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1 Introduction

Blockchain (BC) technology has garnered significant attention in recent years
for its potential to revolutionize various industries and enhance trust in digital
transactions [5,65,13,12]. The decentralized and immutable nature of blockchain
systems has introduced novel solutions to long-standing problems, such as secure
and transparent transactions, efficient supply chain management, and decentral-
ized finance. However, while the benefits of blockchain technology have been
widely discussed, the underlying peer-to-peer (P2P) networks that power these
systems have received comparatively little scrutiny [25,27].

The P2P networks that support blockchain systems serve as the backbone of
their operation, facilitating consensus, data propagation, and transaction vali-
dation. Understanding the structural properties, topological characteristics, and
vulnerabilities of these networks is crucial for realizing the full potential of
blockchain technology and ensuring its robustness against emerging threats [17,30].
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Yet, the research community’s attention has predominantly focused on the cryp-
tographic and consensus aspects of blockchain systems, leaving the underlying
P2P networks relatively unexplored.

This research paper aims to bridge this gap by delving into the largely un-
charted territory of blockchain’s P2P networks. By investigating the structure
and behavior of these networks, we can gain valuable insights into their limi-
tations, vulnerabilities, and potential improvements. This exploration is critical
for devising effective strategies to enhance network resilience, scalability, and
security in blockchain systems.

1.1 Research question and objectives

In this work, we aim to analyze the graph properties of underlying P2P over-
lays in blockchain networks to gain insights into their network robustness. Our
goal is two-fold: First, we would like to understand the resilience properties of
blockchain overlay networks, by uncovering potential vulnerabilities that might
be exploited by adversaries to compromise the security of blockchain systems.
Second, we would like to look into their structural properties to examine whether
they are structured in a similar fashion and whether they exhibit properties sim-
ilar to other well-known networks like the Web, the Internet, or Social Networks.

To address these questions, we conducted a study on the most important
structural properties of seven distinct BC networks. Specifically, we continu-
ously probed and crawled these BC networks over a period of 28 days to gather
information about all available peers. We analyzed 335 network snapshots per
BC network, resulting in a total of 2345 snapshots. At regular intervals, we
constructed connectivity graphs for each BC network, consisting all potential
connections between peers. We then analyzed the structural graph properties of
these networks and compared them across the seven BC networks.

2 Background and Related Work

The following seven networks are included in our study: Bitcoin, Bitcoin Cash,
Dash, Dogecoin, Ethereum, Litecoin, and ZCash. These networks were chosen
based on their importance and high market capitalization as indicated by [15].
All networks use similar overlay implementations [19]. Two exceptions are Dash
and Ethereum. Dash uses similar network messages as Bitcoin but employs a two-
tier network consisting of mining nodes (peers) and master nodes that facilitate
network discovery and message dissemination. Ethereum uses a different set of
protocols based on the Kademlia [44] P2P architecture for network discovery.

2.1 Bitcoin Overlay Network

In the Bitcoin overlay network, nodes communicate through unencrypted TCP
connections to create a random P2P network. The security of Bitcoin is achieved
through its Proof-of-Work consensus protocol, ensuring that all nodes see the
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same version of the blockchain. The protocol is outlined in the Bitcoin developer
guide [24]. To better understand its intricacies, we alse studied previous research
papers [7,48,34] and analyzed the source code of Bitcoin’s reference client [23].

When a node joins the network, it queries a set of hardcoded DNS seeds in
the Bitcoin Core client to obtain the IP addresses of full nodes that accept new
connections. Once connected, a node receives unsolicited addr messages from its
peers, containing IP addresses of other nodes in the network. The client can also
proactively request additional addresses using getaddr messages. The response
to a getaddr message can include up to 1000 peer addresses. All known addresses
are stored in-memory by the address manager (ADDRMAN) and periodically saved
to disk in the peers.dat file. This allows the client to directly connect to these
peers on future launches without relying on DNS seeds.

In terms of connections, when Alice initiates a connection to Bob, it is consid-
ered an outbound connection from Alice’s perspective and an inbound connection
for Bob. Each peer is permitted to establish up to eight outbound connections
to active Bitcoin nodes and maintain a maximum of 125 active connections in
total.

2.2 Ethereum Overlay network

Ethereum’s network protocols utilize both UDP for node discovery and TCP TLS
channels for other communication, as described in the Ethereum Developer’s
Guide to the P2P network [26]. Node discovery in Ethereum is based on the
Kademlia routing algorithm, which employs a distributed hash table (DHT) [44].
Each peer in Ethereum has a unique 512-bit node ID, and the XOR operation
is used to compute the distance between two node IDs.

Ethereum nodes maintain internally 256 buckets, with each bucket containing
a number of Etehreum-peers node IDs. Peers assign known nodes to specific
buckets based on their XOR distance from themselves. To find peers, a new
node initially adds a pre-defined set of bootstrap node IDs to its routing table.
It then sends a FIND NODE message to these bootstrap nodes, specifying a random
target node ID. In response, each peer provides a list of 16 nodes from its routing
table that are closest to the target. The node subsequently attempts to establish
a certain number of connections (typically 25 or 50) with other peers.

2.3 Related Work

Delgado-Segura et al. [19] emphasize that blockchain P2P networks present
unique characteristics and challenges compared to previously known P2P net-
works. Similarly, Dotan et al. [25] recognize the distinct requirements of blockchain
overlay networks and highlight the lack of understanding of their fundamen-
tal design aspects. Their work identifies differences and commonalities between
blockchains and traditional networks, emphasizing open research challenges in
network design for distributed decentralized systems.

Miller et al. [45] were the first to successfully infer Bitcoin’s public network
topology. They discovered links between nodes using the timestamps included in
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addr messages. In their work, they found indications that the Bitcoin network is
not purely random, having a skewed degree distribution. Biryukov et al. [8], pro-
posed sending fake addresses to reachable nodes and then monitor their propaga-
tion to the network to infer connections among peers. Delgado-Segura et al. [18]
inferred Bitcoin’s network topology using orphaned transactions. Their method
relies on subtleties of Bitcoin’s transaction propagation behavior. Their results
also indicate that Bitcoin’s testnet does not resemble a random graph. Neudecker
et al. [49] used timing analysis of transaction propagation delays, as observed by
a monitoring node, to infer the topology. Their approach requires a highly con-
nected monitoring node and the creation of transactions. Grundmann et al. [34],
proposed mechanisms for Bitcoin topology inference based on double–spending
transactions. However, this method was not intended to perform a complete net-
work topology inference due to the high incurred cost of fabricated transactions.
Taking advantage of block-relay mechanisms, Daniel et al. [16] presented a pas-
sive method to infer the connections of mining nodes and their direct neighbors
in the ZCash network. Neudecker and Hartenstein [50] surveyed the network
layer of permissionless BCs, simulated a passive method to infer the network
topology with substantial accuracy, and highlighted that keeping the network
topology hidden is an intermediate security requirement.

To hinder attacks that utilize topology inference, Bitcoin Core developers im-
plemented a series of changes to the network protocol. To mitigate the methods
described in [8], the Bitcoin client now rejects getaddr requests from inbound
connections [22]. To address adversarial methods proposed by Miller et al. [45],
nodes stopped updating the timestamp field in the address manager, making it
impossible to infer active connections [52]. Neudecker’s timing analysis is also
rendered impractical due to code changes [21].

Works like [60,31] shed light on the unreachable side of Bitcoin. More recently,
Grundmann et al. calculated the degree distribution of reachable peers in the
Bitcoin network, by leveraging a spam wave of IP addresses [32].

Despite previous efforts, little is known regarding the structure and topo-
logical properties of BC overlay networks. Past studies have mainly focused on
methods for inferring the well-hidden topology of Bitcoin, either against the
whole network or a specific peer. With the exception of [45], these studies were
validated against the Bitcoin testnet [18], or against selected nodes [49,34].

Graph Analysis and Its Applicability to Blockchain Networks Graph
analysis is a powerful tool for understanding network resilience. It has been
widely used to characterize complex networks and investigate resilience in various
fields and applications in a variety of network types, such as technological, social,
infrastructure, transportation, and biological. A recent survey highlights the
prevalence of graph analysis with respect to network resilience research [29].
Graph analysis has also been used extensively to study the transaction graphs
of major BCs, namely Bitcoin and Ethereum [4,11,37,41,53,63,64]. Using similar
methods, Lee et al. analyze Bitcoin’s Lightning Network [39]. In their work, they
found that it exhibits strong scale-free network characteristics, implying that the
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Lightning Network can be vulnerable to DDoS attacks targeting some central
nodes in the network.

Although it is an indispensable tool for assessing network robustness, graph
analysis has not been applied to BC networks. We believe that a contributing
factor to this omission in the literature is mainly the lack of topological infor-
mation on the underlying networks.

A recent work by Paphitis et al. [54], examines the partition resistance of
these networks against random failures and targeted attacks, as well as the po-
tential for malicious attacks facilitated by the presence of common entities across
different networks and their placement in Autonomous Systems.

To our knowledge, this is the first study to focus on the structural proper-
ties of P2P networks of multiple blockchains. By crawling the reachable nodes
in the network, we circumvent the challenges of topology inference and build a
simple network monitor that can probe seven different BC networks in parallel
to uncover all potential connections. Our implementation does not require high
connectivity in each network and is free of transaction processing costs, allowing
greater scalability. Finally, we analyze the graph properties of BC overlay net-
works to compare their structure and investigate how their characteristics affect
their security properties.

3 Methodology

To analyze a graph, information is needed about the graph topology, i.e., how
the vertices are connected to each other. Acquiring exact topological information
on a dynamic P2P network is a challenge. More so in blockchain overlays, where
this information is considered paramount for the security of the network, and, as
previously discussed, a variety of topology hiding techniques are used [45,50,34].

3.1 Data Collection Process

To mitigate the challenges associated with acquiring a precise snapshot of the
overlay network, as discussed in Section 2.3, we employ the same approach
that the authors introduced in a related research study conducted by Paphi-
tis et al. [54]. In more detail, we collect all known peers for each reachable node
in the P2P network. We achieve this by repeatedly sending getaddr messages to
each connected node. Nodes receiving the message respond with an addr mes-
sage that contains a number of IP addresses known to the replying peer. Each
BC is assigned to a process that creates hundreds of user-level threads. Interme-
diate data collected during crawling are stored in an in-memory key-value store,
each process having its own instance. Following the protocols of each BC, each
process connects to its assigned network and recursively asks each discovered
node for its known peers. Each new discovered node is stored in a pending set.
Threads constantly poll their pending set for a new node, initiate a connection,
and retrieve a list of its known peers.
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Upon successful connection to a peer, its entry is removed from the pending

set. On each response received to a getaddr message, the process makes an
entry, mapping the originating node (Nor) to the peer list it knows of: Nor →
{P0, P1, ..., Pn}, where P0−n are the peers included in the reply of Nor. In effect
we draw an outgoing edge from Nor to each peer in the reply. This entry is stored
in the edges set. When the pending set becomes empty, the crawler starts over.
The edges set remains intact and is updated in subsequent rounds. Replies from
nodes that are already mapped in the edge set are appended to the respective
entry. After a period of approximately two hours, all processes synchronize and
dump their edge set to storage.3 After the dump, all sets are emptied and each
process restarts and repeats the same procedure.

In this fashion, we construct connectivity graphs, i.e., graphs that contain
all possible connections that could be made in the network. Our methodology
is presented in more detail in [54], where we also show that this method is
capable of reconstructing the contents of the address manager (ADDRMAN). In the
same work, the accuracy of the collected data is validated against a controlled
monitoring node, as well as against external data sources. The observed graphs
were analyzed using the SNAP [40] and NetworkX [35] packages.

Ethical Considerations. We emphasize that we only collected and processed
publicly available data, with no intention of deanonymizing users or establish-
ing connections between individuals or organizations and their IP addresses. No
personally identifiable information was collected during the study. We have gath-
ered IP addresses known to each node using the node discovery mechanism of
the protocol. We only established short-lived connections with discovered peers
and responded only to the expected initial handshake. Finally, we have refrained
from frequent retransmissions and requests to avoid exhausting a peer’s network
resources.

3.2 Limitations

Arguably, the observed connectivity graphs contain a number of false edges in
the graph, i.e., they contain edges that do not exist in the real network. To
understand how much the network properties are affected by these errors, we
turn to an area of research that deals with measurement errors in network data.
Wang et al. [59] studied the effect of measurement errors on node-level network
measures and found that networks are relatively robust to false positive edges.
Similarly, Booker described the effects of measurement errors on the attack vul-
nerability of networks [9]. Booker also finds that false positive edges have the
least impact on the effectiveness of random and targeted attacks.

To investigate the accuracy of the observed graphs compared to real net-
works, we adapt the methods used by Booker and Wang [9,59]. In particular, we

3 Two-hour periods were chosen, to allow future analysis of longitudinal evolution of
the networks. We believe that a larger window would not capture enough of the
evolution dynamics.
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construct a random graph Greal consisting of N = 1000 vertices, assigning to
each vertex k outgoing links, so that k is drawn from the real Bitcoin degree dis-
tribution, as calculated by Grundmann et al. in [32]. Then, starting with Greal,
we add random edges with the constraint that the resulting observable graph,
Gobs, has a degree sequence drawn from the observed degree distribution we ob-
tain using the methodology described above (see Section 3.1), by probing peers
for their known addresses. Since Grundman’s calculated degree distribution ap-
plies only to reachable peers, we also use the degree sequence of reachable peers,
ignoring any unreachable nodes. In this way, the resulting observable graph Gobs

contains a number of real links plus an additional number of edges that corre-
spond to the known peers of each node (false positive edges in [9]). To inspect
the effects of false edges on the observed network characteristics, we calculated
a set of graph metrics for both graphs Greal and Gobs and compared them.

The average values calculated from 20 simulations are presented in Table 1.
Gobs exhibits more robust characteristics, evident by a higher clustering and
a lower average betweenness. This is expected as it contains much more edges
than Greal. On the other hand, the average shortest-path values are very close
in both sets of graphs. The results of this simulation show that the differences in
the calculated metrics are consistent and almost constant. Thus, the calculated
properties of the observed graphs can serve as a bound to the properties of the
real graphs. The Chebyshev distance in the last row indicates the maximum
absolute distance between the corresponding values.

Table 1: Measurement error simulation results.
*Betweenness not normalized.

Metric−→ Avg. Shortest Path Average Degree Clustering Assortativity Avg Betweenness*

Greal 1.89 114.6 0.21 -0.02 447,893
Gobs 1.56 437.7 0.63 0.07 280,648
Chebyshev Distance 0.34 333.9 0.43 0.12 172,904

4 Analysis of P2P Overlays

We aim to answer the following questions about BC overlay networks: a) What
are their structural properties and network characteristics? b) Are they all struc-
tured similarly? c) Do they share common properties? d) Do their properties
relate to other networks such as the Internet topology, Web or social networks,
or are they random? e) How do their characteristics affect security? This section
presents metrics, adapted from previous research [61,2,29,55,36,1], to assess the
resilience of a blockchain network. These metrics are considered standard for
analyzing networks and understanding non-obvious properties [61], and can be
used to evaluate network resilience to errors and attacks. In this section, we use
the following notation for clarity and conciseness: each set of edges corresponds
to a graph, denoted St

c, representing a snapshot of the BC network c, on date t.
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Other online networks Online social networks, the Web and the Internet / AS
topology are the most studied online networks [46,42,57,10]. This section shares
much of the methodology used in such studies. It is reasonable to compare the
structure of blockchain networks with the structure of other known technolog-
ical and information networks. Nevertheless, we are aware that: a) the studied
graphs do not represent the actual network topology, and b) the P2P structure
of blockchain networks is fundamentally different from the aforementioned net-
works. The comparisons made throughout this section serve as a reference point
for the results collected. However, we note that useful conclusions can be drawn
about blockchain overlays, especially when comparing the different networks be-
tween them, since they implement similar protocols [19] and we follow the same
measurement methodology.

4.1 Fundamental graph properties

The most important properties of the derived graphs are summarized in Table2.
The metrics were individually calculated on each graph St

c and then averaged.
The values extracted from the collected data sets match the values reported in
related measurement work [38,20,16]. Specifically, each day, the monitoring node
was able to discover 120081 nodes in Bitcoin, 19543 in Ethereum, and 4132 in
Zcash (reporting median values). On average, the monitoring node made more
than 1.3M requests per day, covering all networks.

The diameter of a connected graph is defined as the longest shortest path be-
tween all pairs of nodes. A smaller diameter usually indicates better robustness,
as adding edges would shorten the longest shortest path between distant nodes,
making the network more tightly coupled. The Average Shortest Path (ASP)
is closely related to network connectivity. Smaller average shortest paths imply
increased robustness, since the distance between any pair of nodes is reduced.
All networks appear to be well connected, given the size of their largest con-
nected component, their low diameters, and short ASP. Moreover, we observe
that Dash is markedly the most dense network and is almost fully connected. It
has a strongly connected component (SCC), i.e., a subgraph in which all nodes
are reachable from all other nodes. The SCC comprises 75% of the total network
nodes. Larger blockchain networks have a smaller SCC compared to smaller ones.
Networks differ mainly in size, but this is independent of their protocols; in a
free market, user perception of value determines a network’s popularity.

4.2 Degree Distribution

The degree (number of links with other nodes) distribution affects many network
phenomena, such as network robustness and efficiency in information dissemina-
tion [6]. In addition, random networks have binomial degree distributions, while
in real systems, we usually encounter highly connected nodes that the random
network model cannot account for. In Figure 1, we plot the complementary cu-
mulative distribution (CCDF) of the out-degree of all snapshots collected for all
networks in our study.
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Table 2: Basic network graph metrics per BC network (average values across all
collected snapshots) For each metric we highlight the value that indicates less
resilience. * Normalized Betweenness using the min-max method.
Network: Bitcoin Bitcoin Cash Dash Dogecoin Ethereum Litecoin Zcash

Nodes 120k 33k 9k 2.1k 17.5k 11.7k 4.1k

Edges 37M 748k 29M 330k 556k 3.7M 231k

Connected Component 1 1 1 1 0.99 1 1

Strognly Connected Component 0.06 0.03 0.75 0.2 0.13 0.14 0.06

Diameter 4 4 3 3 5 3 4

Density 0.004 0.001 0.5 0.11 0.004 0.047 0.024

Avg. Degree 254.16 20.22 2370.88 126.45 31.14 278.85 48.84

Assortativity -0.2 -0.64 -0.06 -0.13 -0.02 -0.01 -0.22

Reciprocity 0.32 0.21 0.49 0.34 0.02 0.27 0.25

Global Clustering Coefficient 0.049 0.011 0.166 0.28685 0.0022 0.0735 0.3094

Avg. Shortest Path 2.55 2.82 1.93 1.77 3.78 1.96 1.72

Average Betweenness 2.40e+07 1.95e+06 2.74e+06 1.62e+04 1.12e+06 5.35e+05 1.43e+04

Normalized Betweenness* 49727 23018 8666 1257 8871 8160 1462

We color the snapshots according to their timestamp. Our first observation
is that networks such as Bitcoin and Ethereum manifest considerable variability
in degree distribution between snapshots. In contrast, the degree distributions
in Dash and Dogecoin have less variability (seen by the distance between snap-
shots). Another interesting observation is that in most networks we have a high
fraction of unreachable nodes, either because they are offline or behind NATs.
This observation confirms the findings of Wang and Pustogarov [60] who stud-
ied the prevalence and deanonymization of unreachable peers. The presence of
unreachable peers is discussed in a following paragraph.

Our results also suggest that these blockchain networks have heavy-tailed
degree distributions. We further discuss their best distribution fit and their scale-
free property in a following paragraph. Finally, we observe significant deviations
from the network protocols. In Bitcoin, for instance, one would expect that
reachable nodes would have at least 1K out-degree, since Bitcoin clients with
the default parameters are set to respond with 1K known peers. In contrast, we
observe a number of nodes with an out-degree less than 100, i.e., nodes reply
with fewer addresses than the default parameter. We note that this behavior
along with network churn could be leveraged to amplify eclipsing or network
attacks similar to the SyncAttack [56].

Comparing the network densities, we observe that DASH has a very tight
network, while Bitcoin, BitcoinCash, and Etherum are much less dense. This
result indicates that DASH and Dogecoin have a more resilient structure than
other networks.

4.3 Degree Assortativity

In general, a network shows degree correlations if the number of links between
the high- and low-degree nodes is systematically different from what is expected
by chance. In some types of networks, high-degree nodes (or hubs) tend to link
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(a) Bitcoin (b) Bitcoin Cash (c) Dash (d)
Colorbar

(e) Dogecoin (f) Ethereum (g) Litecoin (h) ZCash

Fig. 1: Out-degree complementary cumulative distribution function of collected
graphs. Snapshots are colored according to the colorbar.

to other such hubs, while in other types, hubs tend to link to low-degree nodes,
i.e., what is known as a hub-and-spoke pattern. Assortativity, or assortative
mixing, is a preference for nodes in a network to attach to others that are similar
in some property; usually a node’s degree.

The assortativity coefficient, ρ, is the Pearson’s correlation coefficient of de-
gree between pairs of linked nodes and lies in the range −1 ≤ ρ ≤ 1. A network
is said to be assortative (ρ tends to 1) when the high-degree nodes tend to link to
each other and avoid linking to the low-degree nodes, while the low-degree nodes
tend to connect to other low-degree nodes. A network is said to be disassortative
(ρ tends to -1) when the opposite happens. A random network has ρ close to
zero and can be characterized as neutral. Incorporating this feature into network
models improves the accuracy of the model in simulating the behavior of real-
world networks. Disassortative networks tend to exhibit greater vulnerability to
targeted attacks [36,51,43].

Correlations between nodes of similar degree are common in various observ-
able networks. Social networks tend to exhibit assortative mixing, while tech-
nological and biological networks often show disassortative mixing, with high-
degree nodes connecting to low-degree nodes. In disassortative networks, low-
degree nodes, particularly those that have recently joined the network, can be
discovered more quickly when connected to hubs. Removing these hubs can im-
pact node discovery, graph connectivity, and potentially facilitate attacks such
as eclipsing. Adversaries with high connectivity can exploit this knowledge to
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advertise malicious peer addresses, compromising the ADDRMAN of benign peers.
We compute the assortativity coefficient for each snapshot, reporting the av-
erage values in Table 2. The networks analyzed exhibit negative assortativity,
with DASH, Dogecoin, and Litecoin being closer to neutral (assortativity close
to 0). Conversely, Bitcoin Cash, Zcash, and Bitcoin display more pronounced
disassortativity. The negative assortativity indicates a hub-and-spoke structure
in these networks, suggesting the presence of central peers that are crucial to
the network and susceptible to targeted DDoS attacks.

4.4 Clustering Coefficient

The global clustering coefficient C is based on the number of triplets of nodes
in the graph and provides an indication of how well the nodes tend to cluster
together. A triplet is defined as three nodes connected by two edges. A triangle is
a closed triple, i.e., three nodes connected by three edges. The global clustering
coefficient is the number of closed triplets (or 3 x triangles) over the total number
of triplets (both open and closed). A higher clustering coefficient indicates the
presence of redundant pathways between nodes (due to the higher number of
triangles), increasing the overall robustness of the network. The global clustering
values are presented in Table 2. We observe that larger networks, tend to have
lower clustering than smaller networks with Ethereum having the lowest value.
This indicates that larger networks exhibit less robust characteristics. We suspect
that this is closely related with the presence of unreachable peers, which is
addressed in a following paragraph.

Unlike global clustering, the local clustering coefficient CCi measures the
density of links in the immediate neighborhood of node i: CCi = 0 means that
there are no links between i’s neighbors, while CCi = 1 implies that each of
i neighbors also links to each other. In a random network, the local CC is
independent of the node’s degree, and average CC, i.e., < CC >, depends on
the size of the system with respect to the number of nodes, N . On the contrary,
measurements indicate that for real networks, e.g., the Internet, the Web, science
collaboration networks, CC decreases with the degree of the node and is largely
independent of the size of the system [6]. The local CC in a random network
(CCrand) is calculated as the average degree < k > over N , i.e., CCrand = <k>

N .

The average degree of a network is 2L
N , where L is the number of links. The

average CC of a real network is expected to be much higher than that of a
random graph.

In Figure 2(a), we compare the average CC of the collected graphs with the
expected CC for random networks of similar size. As in other real networks, we
observe a higher CC than expected for a random network, indicating that the
synthesized graphs deviate significantly from random networks. In Figure 2(b),
we plot the dependence of CC on the degree of the node for two of the networks
studied, where we make some remarkable observations. Although the empirical
rule of Barabasi [6] states that higher-degree nodes have lower CC, in Bitcoin
we observe a significant fraction of high-degree nodes with high CC. The same
finding was observed in the Ethereum and Zcash graphs. Another deviation
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(a) All Networks (b) Bitcoin and Dash

Fig. 2: Analysis of Clustering Coefficient (CC) results.
(a) <CC>

<k> vs. network size; Size and CC averaged across snapshots St
c∀t ∈ T .

Markers correspond to the networks of Table 2. Lines correspond to the predic-
tion for random networks, CC = <k>

N , with constant < k > and varying size N .
Similar to other known networks, the average CC appears to be independent of
the network size N . (b) The dependence of the local CC on the node’s degree
for each network. CC(k) is measured by averaging the local CC of all nodes
with the same degree k (showing results of aggregating all snapshots of a given
network). Horizontal lines correspond to the average CC of the network.

from the same empirical rule is observed in Dash, where all nodes appear to
have an almost constant CC, independent of the node degree. We attribute
this behavior to its temporal characteristics, previously discussed in the results
related to Fig. 1. Further inspection reveals that Dash has very low churn and
that most nodes are always online. The observed CC distributions indicate that
the collected graphs are governed by rules that are rarely encountered in other
known network systems. Note that the actual networks represented by these
synthesized graphs are likely to have lower CCs, since we would expect fewer
edges (see also Table 1).

As explained in Section 3, synthesized graphs are constructed by node adver-
tisements. From Figure 2 we can say that almost all nodes in the Dash network
know and advertise almost all other peers. This is not surprising given the size of
the network and the strongly connected component being very high. In contrast,
the Bitcoin network exhibits variations in the clustering coefficient, indicating
that not all nodes know and advertise all other peers. This is partly explained
by the size of the network and the high presence of unreachable peers (see also
Sect. 4.8). The temporal dynamics of the network could also affect peer an-
nouncements.

4.5 Average Betweenness Centrality

Average betweenness centrality measures how many short paths between ver-
tices in the network pass through a given vertex. The betweenness centrality of
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a node v is given by the expression: g(v) =
∑

s̸=v ̸=t
σst(v)
σst

where σst is the total
number of shortest paths from node s to node t and σst(v) is the number of those
paths that pass through v. Nodes with high betweenness centrality act as bridges
between parts of the network and therefore have a great control in the connectiv-
ity and information propagation of the network. It has been demonstrated that
attacking or removing highly central nodes is one of the most effective strategies
to partition a network or diminish its largest connected component.

The average node betweenness is the sum of node betweenness centrality for
all nodes in a graph. Betweenness centrality of a node v is the sum of the frac-
tion of the shortest paths of all pairs that pass through v [28]. A smaller average
betweenness indicates that shortest paths are more evenly distributed among
nodes; thus, it implies greater robustness. Nodes with high betweenness central-
ity tend to play a prominent role in networks, as they act as a bridge between
groups of other nodes. Nodes with fewer connections than others may still have
high betweenness, allowing them to fulfill a broker role and facilitate commu-
nication and information flow throughout the network. In effect, high average
betweenness implies that network connectivity relies on a few central nodes, and
such networks are more susceptible to targeted attacks. High variance in the
betweenness centrality distribution is also an indication of lower robustness, as
observed in [62,1]. Bitcoin and BitcoinCash have very high values of average
betweenness, which further suggests that these networks are less resilient.

4.6 Scale-free property

One network property, tightly related with the degree distribution of a network,
is the scale-free property. A scale-free network is defined as a network whose
degree distribution follows a power law, i.e., having a probability distribution
p(k) ∝ k−α. The exponent α is known as the scaling parameter and typically
lies in the range 2 < α < 3. The scale-free property strongly correlates with the
network’s robustness to random failures and has received tremendous attention
in the scientific literature (e.g., see [6]). Many real-world networks have been
reported to be scale-free, although their prevalence is questioned [14]. To test
how well the degree distribution of each network snapshot can be modeled by a
power-law (PL), log-normal (LN), power-law with exponential cutoff (PLEC)
or stretched exponential (SE), we calculate the best fit using the powerlaw pack-
age available by Alstott et al. [3].

In Table 3, we report the number of times each type of distribution was the
best fit, for all snapshots of the same network The calculated results indicate the
dynamic nature of blockchain networks. Such networks that change over time
may fit different distributions depending on the snapshot collected, something
that is also visible in Figure 1. These results suggest that blockchain overlays are
not structured in the same way. However, in general, the degree distributions of
the collected graphs belong to the exponential family of distributions. According
to sources [18,17,25] Bitcoin’s network formation procedure is intended to induce
a random graph. Previous research [45,18] showed that the Bitcoin network does
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Table 3: Degree distributions of graphs best-fit for different types of exponential
distributions.
PL:power-law; LN : log-normal; PLEC: power-law with exponential cutoff; SE:
stretched exponential.
Disrtibution Bitcoin Bitcoin

Cash
Dash Dogecoin Ethereum Litecoin Zcash

LN 6.29% 76.90% - 49.40% 21.90% 40.10% 0.60%

PL 0.60% 16.20% 1.80% 4.80% 24.60% 12.60% 18.90%

PLEC 93.11% 6.90% 57.20% - 18.30% 46.40% -

SE - - 41% 45.80% 35.30% 0.90% 80.50%

not resemble a random graph. Our results indicate that the synthesized graphs
are also substantially different from random networks.

4.7 Small-world property

The small-world phenomenon states that if you choose any two individual nodes
in a small-world graph, the distance between them will be relatively short and
definitely orders of magnitude smaller than the size of the network. We examined
all collected snapshots to see if they satisfy the small-world property, by calcu-
lating the ω metric proposed in [58]. The metric is defined as ω = Lr

L − C
Cl

where
L and C are the average shortest path and the average clustering coefficient
of the snapshot, respectively. Lr is the average shortest path for an equivalent
random network, and Cl is the average clustering coefficient of an equivalent
lattice network. The value of ω ranges between −1, when the network has lattice
characteristics, to +1 when the network has random graph characteristics, with
values near 0 interpreted as evidence of small worldliness. The average shortest

path of a random network, Lr, is given by ln(n)
ln(k) [6]. The Clustering Coefficient of

the lattice, Cl is calculated as 3
4
k−1
k−2 [47]. The parameter k is the average degree.

We did not find evidence that the networks under study satisfy this property.
Although we observe low average distances in all graphs, they do not have high
enough clustering coefficients to be considered as small-world. Indicatively, the
ω values we calculated are greater than 0.5 for Dash and Zcash. The rest of the
networks have values greater than 0.8. According to Table 1 we would expect the
real networks to exhibit lower clustering coefficients but similar average shortest
path length, therefore driving ω even higher. Thus, we do not expect that the
real BC networks would satisfy the small-world property.

4.8 Presence of Unreachable Nodes

It is well known that the vast majority of nodes on the Bitcoin overlay net-
work are unreachable [60,33]. Our collected data verify this and also suggest
that unreachable peers are present in all blockchain overlays. In Table 4 we list
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Table 4: Presence and median in-degree of unreachable peers in each overlay.

Network
% of unreachable

nodes
Median
in-degree

Ethereum 98% 4

BitcoinCash 96% 3

Bitcoin 88% 3

Litecoin 86% 75

ZCash 84% 4

Dogecoin 73% 68

DASH 18% 984

our findings. The in-degree indicates how many reachable peers advertise an un-
reachable address. Notably, a high percentage of unreachable nodes appears in
all networks, leading to the observation that blockchain networks have a strongly
connected core and a high number of unreachable nodes that lie on the fringe of
the network. DASH stands out for having much less unreachable peers.

Unreachable nodes were previously known to exist in the Bitcoin and Ether-
eum networks. Our results indicate that they are also present in all blockchain
networks, although at different percentages. The existence of unreachable peers
is long known, but this class of peers has received little attention from the re-
search community. It has been demonstrated that they play an important role
in blockchain systems [60].

The presence of unreachable peers, which can affect the properties of a net-
work, is not related to the network protocols used. Their presence is more likely
influenced by socioeconomic factors such as the popularity of a cryptocurrency,
its value, and the availability of compatible wallet software. Many blockchain
clients, such as cryptocurrency wallets, appear as unreachable peers in a net-
work, and the number of these peers depends on the factors mentioned above.
However, we observe that networks with a high percentage of unreachable nodes
exhibit rather less robust properties (see Table 2) such as high average between-
ness, lower density, and lower clustering.

5 Discussion

In this study, we analyze the structure of seven blockchain networks and eval-
uate their resilience based on the computed graph properties. Our results are
summarized below:

– Major blockchain networks have characteristics that indicate towards a less
resilient structure. In particular, Bitcoin, BitcoinCash, and Ethereum display
lower density and higher average average betweenness than other networks,
suggesting increased vulnerability to targeted attacks.

– Among the networks studied, BitcoinCash appears to be the most vulnera-
ble, demonstrating lower density, a dissassortative nature, and high average
betweenness.
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– Despite utilizing similar protocols (excluding Ethereum), the networks ex-
hibit distinct structural properties and resilience traits. Possible explanations
for these differences include variations in network size, temporal character-
istics, and the presence of unreachable peers.

– The networks’ degree distribution per snapshot demonstrates significant
variation. While some snapshots align with power-law distributions, oth-
ers exhibit better fits with log-normal, power-law with exponential cut-off,
or stretched exponential distributions.

– Their clustering coefficient distributions are similar to other real networks,
and differ from random networks with similar size and average degree. They
have low diameters and short average shortest path lengths, but we did not
observe evidence of satisfying the small-world property.

It is important to note that our results are derived from connectivity graphs
constructed using P2P address propagation, rather than representing the real
topology of the networks. As a result, the networks studied may not accurately
reflect precise network properties. Table 1 illustrates how these results can es-
tablish limits for the properties of real networks. Our simulations in Section 3
indicate that real networks are likely to exhibit lower clustering and higher be-
tweenness, rendering them less resilient than our observations suggest.

6 Conclusions

To conclude, we have presented a comprehensive examination and analysis of the
structural properties of seven distinct blockchains, focusing on their resilience. By
leveraging selected graph metrics, we extract valuable insights into the resilience
properties of these overlay networks. To achieve this, we employ custom crawlers
to probe 32 million blockchain peers, capturing each node’s list of known peers
and extracting their potential connections. Our dataset is made available for
future research purposes.

Through graph analysis, we have discovered that blockchain networks exhibit
a distinct structure compared to traditional networks such as the Web. Surpris-
ingly, we have observed significant variations in the graph characteristics among
the studied blockchain networks, despite their similar protocols. Our findings
highlight a concerning vulnerability in major blockchains: they heavily rely on
a limited number of central nodes for connectivity, making them susceptible
to targeted denial-of-service (DoS) attacks. While blockchains are renowned for
their decentralized nature, it is crucial to acknowledge that vulnerabilities at
the network layer can introduce significant risks. These vulnerabilities may lead
to network partitioning, leaving the blockchain exposed to various attacks, in-
cluding user deanonymization, node eclipsing, consensus breaches, and double
spending [27].
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