
Attaining Workload Scalability and Strong Consistency for
Replicated Databases with Hihooi

Michael A. Georgiou
mica.georgiou@edu.cut.ac.cy

Cyprus University of Technology
Limassol, Cyprus

Michael Panayiotou
ms.panayiotou@edu.cut.ac.cy

Cyprus University of Technology
Limassol, Cyprus

Lambros Odysseos
lambros.odysseos@cut.ac.cy

Cyprus University of Technology
Limassol, Cyprus

Aristodemos Paphitis
am.paphitis@edu.cut.ac.cy

Cyprus University of Technology
Limassol, Cyprus

Michael Sirivianos
michael.sirivianos@cut.ac.cy

Cyprus University of Technology
Limassol, Cyprus

Herodotos Herodotou
herodotos.herodotou@cut.ac.cy
Cyprus University of Technology

Limassol, Cyprus

ABSTRACT
Database replication can be employed for scaling transactional
workloads while maintaining strong consistency semantics. How-
ever, past approaches suffer from various issues such as limited
scalability, performance versus consistency tradeoffs, and require-
ments for database or application modifications. Hihooi is a new
replication-based master-slave middleware system that is able to
overcome the aforementioned limitations. The novelty of Hihooi
lies in its modern architecture as well as its replication and trans-
action routing algorithms. In particular, Hihooi replicates all write
statements asynchronously and applies them in parallel at the
replica nodes, while ensuring replica consistency. At the same
time, a fine-grained transaction routing algorithm ensures that
all read transactions are load balanced to the replicas consistently.
This demonstration will showcase the key functionalities of Hi-
hooi, including (i) practical management of system components
and databases (e.g., add a new replica node), (ii) increased scala-
bility compared to state-of-the-art approaches, and (iii) support
for elasticity by suspending and resuming database replicas online
without service interruption.

CCS CONCEPTS
• Information systems → Middleware for databases; Data
replication tools; Database transaction processing.

KEYWORDS
database replication; transaction processing; workload scalability;
concurrency control

ACM Reference Format:
Michael A. Georgiou, Michael Panayiotou, Lambros Odysseos, Aristodemos
Paphitis, Michael Sirivianos, and Herodotos Herodotou. 2021. Attaining
Workload Scalability and Strong Consistency for Replicated Databases with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452746

Hihooi. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD ’21), June 18–27, 2021, Virtual Event, China. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3448016.3452746

1 INTRODUCTION
The sustained growth of internet-based services and applications
are driving the rapid increase and high variability of workloads
experienced by the underlying database systems. However, popular
relational database systems (e.g., PostgreSQL, MySQL) have little to
no ability for handling increasing workload demands gracefully (i.e.,
cannot offer workload scalability) or handling workload variations
automatically (i.e., cannot offer workload-driven elasticity) [7].

Database replication has been employed in the past for increas-
ing performance and availability of databases by fully replicating
data across multiple nodes [1]. There are two replication variants,
namely multi-master and master-slave. In the former, the write and
read transactions are executed on all replicas, which rely on group
communication primitives to agree on a serializable execution order
of transactions, limiting the system’s scalability [2, 4, 8]. In the lat-
ter, all write transactions are executed on one primary replica while
the read transactions are processed by the other replicas [12, 13].
As long as the master node can handle the write workload, the
system can scale linearly with the addition of more slave nodes [1].

Current database replication approaches suffer from various
issues. MySQL Cluster [14] uses a synchronous replication mecha-
nism that limits scalability. Postgres-R [8], and its middleware ex-
tension Middle-R [12], require engine modifications of PostgreSQL
for extracting and applying tuple-based updates to replicas. Pgpool-
II [11] and Ganymed [13] are master-slave replication middleware
that apply all modifications serially at the replicas, which often
causes replicas to fall behind the primary. Moreover, Ganymed
blocks reads until a replica becomes consistent with the primary.

Hihooi is a new replication-based master-slave middleware system
that is able to overcome the aforementioned limitations and offer
workload scalability, strong consistency, and elasticity for transac-
tional databases [6, 7]. Any database can easily become the master
in a Hihooi deployment. Replication is then used to (i) increase the
processing capacity of the system, thereby increasing throughput,
and (ii) spread the load across the nodes, thereby decreasing latency.
As a middleware system, Hihooi sits between the database engines
and the application, and does not require any modifications for
either one as it uses the industry’s standard of JDBC/ODBC drivers.

https://doi.org/10.1145/3448016.3452746
https://doi.org/10.1145/3448016.3452746

Hence, Hihooi masks the complexity of the underlying replication
process and offers a single database view in a practical manner.

The novelty of Hihooi lies in its modern architecture as well
as its replication and transaction routing algorithms. In particular,
Hihooi replicates all write statements asynchronously and applies
them in parallel at the replica nodes, while ensuring replica consis-
tency. At the same time, a fine-grained transaction routing algorithm
ensures that all read transactions are load balanced to the replicas
consistently. When Hihooi manages a set of Snapshot Isolation (SI)-
based database replicas, it provides Global Strong Snapshot Isolation,
i.e., it offers the illusion of a single SI database to the client. Finally,
elasticity is achieved by supporting an easy and quick way to add
and remove replicas from the cluster.

Contributions and Demo: We demonstrate Hihooi, a replication-
based middleware system running on a cluster of nine PostgreSQL
database nodes. Our demonstration of Hihooi aims at (i) introduc-
ing the Hihooi architecture and algorithms through a middleware
system implementation and (ii) demonstrating the benefits of us-
ing Hihooi on top of existing transactional databases, in terms of
both increased scalability and better elasticity support. We visually
demonstrate the behavior of its core components in a range of
scenarios, giving the audience members a complete visual insight
into the behavior of Hihooi. In particular, the audience will have
the ability to interact with the system through a graphical web
interface for:

• managing the system components and databases, including
adding a new replica node or a new database, and extending
a database replication group;

• monitoring and comparing the workload scalability against
two other state-of-the-art approaches, while variable trans-
actional workloads are executing; and

• examining Hihooi’s elasticity by suspending and resuming
database replicas online and without service interruption,
while observing the performance impact on transactional
workloads.

2 DB REPLICATIONWITH HIHOOI
Hihooi [6, 7] facilitates scalable and efficient transaction process-
ing via replicating databases across multiple compute nodes and
implementing novel replication and transaction routing algorithms,
outlined below.

2.1 System Architecture
The Hihooi architecture is shown in Figure 1, along with the core
components and the flow of transactions through the system. As a
middleware system, Hihooi provides database-independent connec-
tivity between the applications and the underlying database engines
through the use of custom Hihooi JDBC/ODBC Drivers that im-
plement theHihooi API. Internally, Hihooi also uses JDBC drivers
for interacting with the databases in order to execute the queries
and to manage replication behind the scenes. Hence, neither the
applications nor the database engines require any modifications to
work with Hihooi. HConsole is an interactive console application
that can be used for configuring and managing Hihooi, including
adding/removing replicas and creating/editing database replication

Transaction Manager

Transactions Buffer

Primary DB

Archiver

Buffer

Archiver

Hihooi API

HController

Hihooi JDBC

Seed DB
Extension DB

 Extractor

Delivery Agent

Extension DB

 Extractor

Delivery Agent

Hihooi ODBCHConsole

Write

transactions

Read

transactions

Transactions

Asyncronous write propagation

Incremental

Backup

REST Web

Services

Admin commands

Web

Interface

Figure 1: Hihooi middleware system architecture.

groups. The same functionality is exposed via RESTWeb Services
and visualized by the HihooiWeb Interface.

The Transaction Manager (TM) is responsible for intercepting
and handling all transactions. The write transactions are executed
on the Primary DB, while the read transactions are load balanced
to consistent Extension DBs (see Section 2.3). In addition, the
TM manages the client sessions, oversees the available Extension
DBs, and keeps track of which write transactions they have ap-
plied. Once a write transaction completes on the Primary DB, the
transaction’s statements are pushed into the Transactions Buffer,
which is distributedly stored in memory using Memcached [5]. The
Transactions Buffer acts as a highly available and fault tolerant
propagation medium for all database modifications, which need to
be applied asynchronously to the Extension DBs.

Each Extension DB node hosts one Extractor and one Delivery
Agent service. The Extractor receives the new write transactions
from the Transactions Buffer and applies them to the local data-
base. The Extractors implement a novel algorithm for executing
the transactions in parallel, while respecting the order imposed by
the transaction commit timestamps on the Primary DB (described
in Section 2.2). The Delivery Agent is responsible for executing
the read-only transactions routed to the local Extension DB and de-
livering the results set incrementally to the client when requested,
to avoid creating an execution bottleneck at the TM.

TheArchiver is responsible for performing incremental backups
of the Primary DB to create the Seed DB, while keeping track with
which transactions are included in the backup. Hence, the Seed
DB represents a consistent checkpoint of the Primary DB at some
point in time, and it is used for initializing new Extension DBs (see
Section 2.4). In addition, the Archiver periodically moves the write
transactions that have been applied by all Extension DBs from the
Transactions Buffer to its local and persistent Archiver Buffer to
keep the memory usage of the Transactions Buffer bounded. Finally,
all system management operations, such as adding and removing
Extension DBs, are coordinated by the HController.

2.2 Replication Management
Each Extension DB replica must reflect a transaction-consistent
snapshot of the data at the Primary DB, in order to ensure that the

read transactions executing at the replica see a consistent view of
the database. To retain global system consistency, Hihooi captures
the total order of transaction completions on the Primary DB and
replicates the write statements to the Extension DBs, while ensuring
that each replica applies them in the same order. The statement
replication takes place asynchronously to avoid delaying the write
transactions executing at the Primary DB.

The conventional practice in database replication is to apply
the writes serially at the slaves, even though the master processes
them in parallel [10, 13]. With increasing writes, however, the lag
between the master and a slave node can become significant [1].
Hihooi implements a novel algorithm (detailed in [7]) for applying
write transactions in parallel at the slaves, while maintaining strong
consistency guarantees. The algorithm utilizes Hihooi’s notion of
transaction read/write sets. Each transaction𝑇 will read and/or mod-
ify some tables in a database instance, defined as the Table Read
Set and the Table Write Set of 𝑇 , respectively. Similarly, the Column
and Row Read/Write Sets of a transaction𝑇 denote the columns and
rows (based on primary key equality) read/written by 𝑇 , respec-
tively. Note that the read/write sets of 𝑇 are built dynamically and
incrementally at the Transaction Manager upon the submission of
𝑇 . The read/write sets of two transactions can then be used to de-
termine whether the transactions affect the same data items in the
database, which in turn can be used to decide when to parallelize
their execution. Intuitively, if two write transactions modify two
different tables (or different columns/rows of the same table), we
can safely execute them in parallel and let them commit in reverse
order, without violating any consistency guarantees [7].

2.3 Transaction Routing
As a middleware system, Hihooi intercepts all incoming transac-
tions and is tasked with routing them to the underlying database
engines for execution. Both single- and multi-statement transac-
tions are supported. Write transactions are always routed to the
Primary DB, whereas read transactions can be safely routed either
to the Primary DB or to any consistent Extension DB for execu-
tion. However, the asynchronous replication of write transactions
can result in a lag between the Primary DB and the Extension DBs,
which is worsened under heavy write loads. In such a scenario, read
transactions must either block until one Extension DB becomes
consistent (which introduces latency delays) or be redirected to
the Primary DB (which further increases its load). In either case,
performance and scalability can suffer.

Unlike other systems, Hihooi implements a novel routing algo-
rithm that utilizes read/write sets for directing read transactions
to Extension DBs, even if they are not consistent with the Primary
DB. The key idea is that it is safe to route a read transaction 𝑇

to an Extension DB if the tables (or columns/rows) accessed by
𝑇 will not be modified by the write transactions that have yet to
execute on the Extension DB. To achieve this, Hihooi keeps track
of the completed transactions that have been applied on each of
the Extension DBs along with the transactions that are currently
running on the Primary DB. Hence, Hihooi recognizes which ta-
bles, columns, or rows are up-to-date on each of the Extension DBs.
Next, Hihooi checks which read queries are safe (from a consis-
tency point of view) to execute on which Extension DBs. In the

Figure 2: The Databases view.

case where multiple Extension DBs can execute an incoming query,
Hihooi will perform load balancing and send the query to the least-
loaded Extension DB. Hihooi is the first middleware system able
to also do this for read queries that are part of multi-statement
write transactions [7]. By default, Hihooi supports Global Strong
Snapshot Isolation (GSSI) [9]. By controlling the replication and
routing mechanisms, Hihooi can also offer Weak SI, Replicated SI
with Primary Copy [13], and One-copy Serializability [2].

2.4 Scalability Management
Hihooi maintains an incremental backup of the Primary DB, called
Seed DB, in order to (i) enable fast recovery from Primary DB fail-
ures and (ii) add new Extension DBs efficiently without affecting
the performance of the Primary DB or the existing Extension DBs.
A new Extension DB is created by cloning the Seed DB into a new
node, followed by the execution of all write transactions missed
since the creation of the backup (located on the Archiver and Trans-
actions Buffer). Since Hihooi already allows for Extension DBs to
fall behind and uses a smart query routing algorithm for executing
queries correctly, it is not necessary to enact a global barrier to en-
sure consistency [1]. Instead, as soon as the Extension DB is created,
it can join the system and start executing read transactions, while
concurrently applying the write transactions. When an Extension
DB is removed, the Transaction Manager automatically re-routes
its read transactions to other consistent Extension DBs.

3 DEMONSTRATION PLAN
The demonstration will showcase the key functionalities and bene-
fits offered by Hihooi, which include (i) practical system and data-
base management (e.g., add a new Extension DB node or a new
database replica), (ii) better workload scalability compared to other
state-of-the-art approaches, and (iii) support for elasticity, i.e., sus-
pending and resuming database replicas online. For the purposes
of the demonstration, Hihooi will be running on our 9-node in-
house cluster. Each node has an 8-core, 2.4GHz CPU, 24GB RAM,
1.5TB HDD drives, and runs PostgreSQL v9.5.3. Workloads from
the popular TPC-C [15] and YCSB [3] benchmarks will be executed
on the cluster so that the audience can experience the behavior of
Hihooi and get a better understanding of its advantages. At the
same time, a poster will be used to introduce the audience to the
Hihooi architecture and algorithms.

Figure 3: The Database Groups view.

3.1 Practical System and Database Management
For the first demonstration part, the audience will be able to interact
with the various management features of the Hihooi Web Interface
and experience first hand the ease with which the components
can be configured. The Web Interface contains three views for
managing core components of the middleware system as well as
two views for managing databases and database replication groups.
In particular, the Transaction Managers, Transactions Buffers, and
Replication Managers views can be used for adding and configuring
the corresponding Hihooi component with the same name. Note
that a Replication Manager is a service that combines the Extractor
and Delivery Agent components discussed in Section 2.1. While
a single Hihooi deployment has one Transaction Manager, one
Transactions Buffer, and several Replication Managers, the Web
Interface has been built to manage multiple Hihooi deployments.

One Hihooi deployment can be used for managing and replicat-
ingmultiple databases, organized into groups. A database replication
group associates a primary database with a set of replica databases.
The Databases view lists information about the current databases
(both primary and replica databases), with the options of adding a
new database or deleting an existing one. Figure 2 shows a screen-
shot of the Databases view when adding a new database. The user
needs to fill in the necessary information and select whether this
database will serve as a primary one (and hence can be replicated)
or as a replica of an existing primary database. Creating a data-
base group and associating replicas with a primary database can be
handled in the Database Groups view, shown in Figure 3.

3.2 Workload Scalability
In this part of the demonstration, we plan to execute a data-intensive
workload, while varying the number of concurrent clients (and
hence, the total workload), the ratio of read-to-write transactions,
and the number of available replicas. In this way, the audience will
get a better understanding of how quickly the write transactions
are applied to the replicas and how the read transactions are load
balanced across the replicas. At the same time, we will compare
the scalability of Hihooi against the approaches employed by two
other middleware systems, namely Ganymed [13] and C-JDBC [2],
and showcase Hihooi’s superior performance.

The workload statistics and system utilization across all nodes
will be visualized using theWorkload Statistics and System Statistics
views, respectively. The provided workload information includes
read and write transactions per second for the overall Hihooi de-
ployment, as well as for the primary and replica databases. The in-
formation is presented in line graphs that are continuously updated

Figure 4: The Workload Statistics view.

Figure 5: The Replication Managers view.

live, as illustrated in Figure 4. In addition, a bar graph (top-right
part of Figure 4) shows the ID of the latest committed transaction
on each database, allowing the user to visually see whether there is
any significant lag between the primary and the replica databases.
In this particular example, the second replica is currently offline
(shown in red), while the other two replicas (shown in green) are
almost up to date with the primary (shown in blue). The System
Statistics view shows live metrics regarding CPU, memory, disk,
and network utilization per node.

3.3 System Elasticity
Continuing with the workload executions from Section 3.2, the audi-
ence will also observe how the workload and system behaves when
a Replication Manager (RM) is suspended, resumed, or added to the
system online without any interruptions; thus getting a deeper un-
derstanding of the elastic capabilities of Hihooi. In particular, when
an RM is suspended (or lost due to some failure), its workload is
automatically re-routed to other consistent replicas. When the RM
is resumed, the missed write transactions are replayed from that
point forward, while the RM starts serving read transactions shortly
after. The suspending, resuming, and adding RMs functionalities
are enabled by the Replication Managers view, shown in Figure 5,
which also visualizes information and the status of the RMs.

REFERENCES
[1] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. 2008. Middleware-

based Database Replication: The Gaps between Theory and Practice. In Proc. of
2008 Intl. Conf. on Management of Data (SIGMOD). ACM, 739–752.

[2] Emmanuel Cecchet, Marguerite Julie, and Willy Zwaenepoel. 2004. C-JDBC:
Flexible Database Clustering Middleware. In Proc. of USENIX Annual Technical
Conference (ATC). USENIX, 9–18.

[3] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proc. of 1st
ACM Symposium on Cloud Computing (SoCC). ACM, 143–154.

[4] Sameh Elnikety, Steven Dropsho, and Fernando Pedone. 2006. Tashkent: Uniting
Durability with Transaction Ordering for High-performance Scalable Database
Replication. In Proc. of 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems. ACM, 117–130.

[5] Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux Journal
2004, 124 (2004), 5.

[6] Michael A Georgiou, Aristodemos Paphitis, Michael Sirivianos, and Herodotos
Herodotou. 2019. Towards Auto-Scaling Existing Transactional Databases with
Strong Consistency. In Proc. of the IEEE 35th Intl. Conf. on Data Engineering
Workshops (ICDEW). IEEE, 107–112.

[7] Michael A Georgiou, Aristodemos Paphitis, Michael Sirivianos, and Herodotos
Herodotou. 2020. Hihooi: A Database Replication Middleware for Scaling Trans-
actional Databases Consistently. IEEE TKDE Early Access (2020), 17 pages.

[8] Bettina Kemme and Gustavo Alonso. 2000. Don’t be Lazy, be Consistent: Postgres-
R, a New Way to Implement Database Replication. In Proc. of the 26th Intl. Conf.
on Very Large Databases (VLDB). Citeseer, 134–143.

[9] Yi Lin, Bettina Kemme, Marta Patiño-Martínez, and Ricardo Jiménez-Peris. 2005.
Middleware Based Data Replication Providing Snapshot Isolation. In Proc. of 2005
Intl. Conf. on Management of Data (SIGMOD). ACM, 419–430.

[10] Ludovic Marcotte. 2005. Database Replication with Slony-I. Linux Journal 2005,
134 (2005), 1.

[11] Jayadevan Maymala. 2015. PostgreSQL for Data Architects. Packt Publishing.
[12] Marta Patiño-Martínez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo

Alonso. 2005. MIDDLE-R: Consistent Database Replication at the Middleware
Level. ACM Trans. Comput. Syst 23, 4 (2005), 375–423.

[13] Christian Plattner and Gustavo Alonso. 2004. Ganymed: Scalable Replication
for Transactional Web Applications. In Proc. of ACM/IFIP/USENIX Intl. Conf. on
Distributed Systems Platforms and Open Distributed Processing. Springer, 155–174.

[14] Mikael Ronstrom and Lars Thalmann. 2014. MySQL Cluster Architecture Overview.
Technical Report. MySQL. https://confluence.oceanobservatories.org/download/
attachments/16418744/mysql-cluster-technical-whitepaper.pdf.

[15] TPC-C 2010. TPC-C Benchmark, Revision 5.11.0. http://www.tpc.org/tpcc/.

https://confluence.oceanobservatories.org/download/attachments/16418744/mysql-cluster-technical-whitepaper.pdf
https://confluence.oceanobservatories.org/download/attachments/16418744/mysql-cluster-technical-whitepaper.pdf
http://www.tpc.org/tpcc/

	Abstract
	1 Introduction
	2 DB Replication with Hihooi
	2.1 System Architecture
	2.2 Replication Management
	2.3 Transaction Routing
	2.4 Scalability Management

	3 Demonstration Plan
	3.1 Practical System and Database Management
	3.2 Workload Scalability
	3.3 System Elasticity

	References

