
Towards Auto-Scaling Existing Transactional
Databases with Strong Consistency

Michael A. Georgiou Aristodemos Paphitis Michael Sirivianos Herodotos Herodotou
Cyprus University of Technology

{mica.georgiou, am.paphitis}@edu.cut.ac.cy {michael.sirivianos, herodotos.herodotou}@cut.ac.cy

Abstract—Existing relational database systems often suffer
from rapid increases or significant variability of transactional
workloads but lack support for scalability or elasticity. Database
replication has been employed to scale workload performance but
past approaches make various performance versus consistency
tradeoffs and typically lack the mechanisms and policies for
dynamically adding and removing replicas. This paper presents
Hihooi, a replication-based middleware system that is able to
achieve scalability, strong consistency, and elasticity for existing
transactional databases. These features are enabled by (i) a novel
replication algorithm for propagating database modifications
asynchronously and consistently to all replicas at high speeds, and
(ii) a new routing algorithm for directing incoming transactions
to consistent replicas. Our experimental evaluation validates the
high scalability and elasticity benefits offered by Hihooi, which
form the key ingredients towards a truly auto-scaling system.

Index Terms—database replication, scalability, end elasticity

I. INTRODUCTION

The proliferation of internet-based services and applica-
tions has led to both a rapid growth and high variability
of transactional workloads, which can negatively effect the
performance of the underlying database system. However,
most existing database systems do not offer any features to
automatically support workload scalability (i.e., the ability to
handle increasing workload demands) or elasticity (i.e., the
ability to handle variations in those workloads). The main
notable exceptions are some Database-as-a-Service (DBaaS)
offerings (e.g., Amazon RDS, Azure SQL DB) that support
some form of scalability and elasticity in a pay-as-you-go
model. Yet, their adoption has been slow due to high costs
for rewriting legacy applications and retraining employees, as
well as privacy and security concerns [1]. Our vision is to offer
automatic scalability and elasticity to existing transactional
databases without application or database modifications.

Database replication has been successfully used for increas-
ing performance and availability of databases by fully repli-
cating data across multiple database nodes [2]. In its master-
slave variant, one primary copy handles all write transactions
while the other replicas process only read transactions [3], [4].
As long as the master node can handle the write workload,
the system can scale linearly with the addition of more slave
nodes [2]; making this approach an ideal candidate towards
an auto-scaling system. The biggest challenges here are in (i)
handling the trade-off between performance and consistency of
the overall system, and (ii) dynamically adding and removing
replicas while the system is running.

Existing replication-based approaches, however, have sev-
eral limitations. Open-source solutions for replication are
database-specific. MySQL Cluster [5] uses a synchronous
replication mechanism that limits scalability. Postgres-R [6]
integrates replica control into the kernel of PostgreSQL and
utilizes special multicast primitives to propagate low-level
write operations to the replicas. Middle-R [4], the middleware
extension of Postgres-R, also requires database engine modifi-
cations for extracting and applying tuple-based modifications.
Finally, Ganymed [3] is a master-slave replication middleware
that applies all changes serially at the replicas, which causes
replicas to fall behind the primary copy.

This paper presents Hihooi, a replication-based master-
slave middleware system that is able to achieve workload
scalability, strong consistency, and elasticity for transactional
databases. An existing database can readily become the master
in a Hihooi deployment. Replication is then used to increase
throughput (via increasing the processing capacity of the
system) and decrease latency (via spreading the load across
the nodes). As a middleware system, Hihooi sits between the
database engines and the clients, offering a single database
view and masking the complexity of the underlying repli-
cation. Neither the database engines nor the clients need to
be modified as long as the popular ODBC/JDBC drivers are
used. Scalability and consistency are enabled by (i) a novel
replication algorithm for propagating write transactions asyn-
chronously and applying them in parallel (and consistently) to
all replicas, and (ii) a new routing algorithm for load balancing
read transactions to consistent replicas. Finally, elasticity is
achieved by supporting an easy and quick way to add and
remove replicas from the cluster.

Potential alternatives: Another database replication approach
is called multi-master, in which all replicas serve both read and
write transactions. However, explicit synchronization mecha-
nisms are needed in order to agree to a serializable execution
order of transactions, so that each replica executes them in
the same order [6]–[8]. Concurrent transactions might conflict,
leading to aborts and thus limiting the system’s scalability [9].
Data partitioning (or sharding) is another scale-out approach,
based on which the database data is partitioned and spread
across all nodes [10]. While this approach does improve
scalability (up to a point due to distributed transactions), it
also requires expensive data migration and extensive manual
physical design tuning for partitioning the data effectively

[11]. More recently, a new class of systems has arisen, called
NewSQL, that offers scalable performance while still main-
taining the ACID guarantees of a traditional database system
[12]. NewSQL systems, however, are often highly optimized
for a narrow set of use cases (e.g., MemSQL [13] is tuned
for clustered analytics) and require other compromises related
to language support or transaction and workload handling
capabilities (e.g., in VoltDB [14], the unit of transaction is
a Java stored procedure).
Contributions: In summary, the paper’s contributions are:
1) A database replication middleware architecture for

achieving workload scalability and consistency (Section II);
2) A statement replication algorithm for applying writes in

parallel while ensuring consistent replicas (Section III);
3) A transaction-level routing algorithm for executing read

transactions consistently and efficiently (Section IV);
4) An implementation and evaluation showcasing the scal-

ability and elasticity attainable with Hihooi (Section V).

II. SYSTEM ARCHITECTURE

Hihooi is a master-slave replication-based middleware po-
sitioned between the applications and the database engines.
The architecture and flow of transactions in Hihooi is shown
in Figure 1. Existing applications can access Hihooi and the
underlying databases using the custom Hihooi JDBC/ODBC
Drivers, without requiring any code changes. Internally, Hi-
hooi uses JDBC drivers for interacting with the underlying
database engines in order to execute the queries and to manage
replication behind the scenes. Hence, Hihooi is not coupled to
the database engines, thus supporting multiple vendors.

All query requests are intercepted by the Transaction Man-
ager and categorized into write transactions when at least one
of the containing queries modifies the database (e.g., INSERT,
UPDATE, DELETE SQL statements) and read transactions
otherwise. The write transactions are directed to the master
node, denoted as Primary DB, while the read transactions are
load balanced to consistent slave nodes, denoted as Extension
DBs. As long as the Primary DB can handle all writes and the
system propagates the writes to the Extension DBs efficiently,
the system can scale linearly by adding more Extension DBs.
Once a write transaction completes on the Primary DB (either
via commit or rollback), the transaction’s statements are
pushed into the Transactions Buffer, which is distributedly
stored in memory using Memcached [15]. The write statements
are then applied to the Extension DBs asynchronously in
order to avoid delaying the write transactions executing at the
Primary DB. Hence, the Transactions Buffer acts as a highly
available propagation medium for all database modifications.

An Extractor service running on each Extension DB node
is responsible for fetching the new write transactions from the
Transactions Buffer and applying them to the local database
in order to keep it consistent with the rest of the system. The
Extractors implement a novel algorithm (discussed in Section
III) for executing the transactions in parallel, while respecting
the order imposed by the transaction commit timestamps on
the Primary DB. In this manner, the Extension DB reflects

Transaction Manager

Transactions Buffer

Primary DB

HController

Hihooi JDBC/ODBC

Backup

DB

Extension DB

 Extractor

Delivery Agent

Extension DB

 Extractor

Delivery Agent

Write

transactions

Read

transactions

Transactions

Asyncronous write propagation

Incremental

Backup

Fig. 1: Hihooi Architecture

a transaction-consistent snapshot of the data at the Primary
DB; that is, it reflects all data modifications of transactions
executed at the Primary DB in the same order of execution.

The asynchronous propagation of write transactions means
that Extension DBs may not always be up-to-date with the
Primary DB. Hence, Hihooi needs an efficient approach for
determining which Extension DBs are consistent with which
incoming read queries. The proposed solution consists of three
parts. First, Hihooi extracts the tables, columns, or rows that
are potentially modified or accessed by each incoming query.
Second, Hihooi keeps track of the completed transactions that
have been applied on each of the Extension DBs and, hence,
recognizes which tables, columns, or rows are up-to-date on
each of the Extension DBs. Finally, Hihooi employs a novel
lightweight algorithm for checking which read queries are
safe (from a consistency point of view) to execute on which
Extension DBs (discussed in Section IV). If no consistent
Extension DB is found, then Hihooi routes the request to the
Primary DB, which is always consistent. A Delivery Agent is
responsible for executing the read-only queries routed to the
local Extension DB and delivering the results set incrementally
to the client when requested, to avoid creating an execution
bottleneck at the Transaction Manager.

The Backup DB represents a consistent checkpoint of the
Primary DB at some point in time. The Backup DB is used
to initialize a new Extension DB rather than the Primary DB
to avoid any overheads imposed to the Primary DB. Next,
the Extractor applies all appropriate write transactions from
the Transactions Buffer and at the same time notifies the
Transaction Manager that it can start serving read queries.
Finally, the HController maintains various system statistics
and coordinates all system management operations, such as
adding and removing replicas. The HController will host
pluggable policies for automatically deciding when to add or
remove Extension DBs, which is our immediate future work.

III. REPLICATION MANAGEMENT

Hihooi intercepts and redirects all incoming write transac-
tions to the Primary DB. As soon as a transaction completes
on the Primary DB, it must be propagated and executed on all

TABLE I: Example write transactions on tables R(A1, A2, A3, A4) and S(B1, B2, B3, B4, B5) along with corresponding
write sets, read sets, affecting classes, and transaction state identifiers (TSIDs)

TX SQL Statement Write Sets Read Sets Affecting TSIDTable Column Row Table Column Row Class
W1 UPDATE R SET A2 = ?, A3 = ? WHERE A1 = 100 R A2, A3 A1 = 100 R A1 A1 = 100 RAS 11
W2 UPDATE S SET B2 = ? WHERE B5 > ? S B2 S B5 CAS 12
W3 UPDATE R SET A3 = ?, A4 = ? WHERE A2 < ? R A3, A4 R A2 CAS 13
W4 DELETE FROM R WHERE A1 = 120 R ∗ A1 = 120 R A1 A1 = 120 RAS 14
W5 UPDATE S SET B4 = ? WHERE B5 < ? S B4 S B5 CAS 15

TABLE II: Example read transactions on tables R(A1, A2, A3, A4) and S(B1, B2, B3, B4, B5) along with the corresponding
read sets, affecting classes, and consistent transaction state identifiers (TSIDs)

TX SQL Statement Read Sets Affecting Consistent
Table Column Row Class TSID

R1 SELECT * FROM R WHERE A2 > ? R ∗ TAS 14
R2 SELECT A3, A4 FROM R WHERE A1 = 100 R A1, A3, A4 A1 = 100 RAS 13
R3 SELECT B2, B3 FROM S WHERE B5 < ? S B2, B3, B5 CAS 12
R4 SELECT A1, B2, B3 FROM R JOIN S ON A1 = B2 R,S A1, B2, B3 CAS 14

Extension DBs, while preserving the completion order from
the Primary DB. Before explaining our replication procedure
in Section III-B, we first introduce the notion of transaction
read/write sets in Section III-A.

A. Transaction Read/Write Sets

Transactions are naturally divided into single and multi-
statement, depending on the number of SQL statements in-
cluded in the transaction. Each transaction T will read
and/or modify some tables in a database, defined as the Table
Read Set and the Table Write Set of T , respectively. For
example, transactions W1 and W2 shown in Table I modify the
respective tables R and S; these tables form the corresponding
table write sets. Read/write sets allow us to reason about
which transactions affect which tables. Thus, they allow us
to effectively decide when to parallelize the execution of
transactions on the Extension DBs (discussed in Section III-B)
and how to route read transactions efficiently (see Section
IV). For instance, W1 and W2 can be executed in parallel
on the Extension DBs since they modify two different tables,
regardless of their commit order on the Primary DB.

Operating with table read/write sets constitutes a coarse-
grained mechanism for reasoning about conflicting transac-
tions. Hence, we define two more levels of granularity for read-
/write sets. First, the Column Read/Write Sets of a transaction
T denote the columns read/written by T . Consider transaction
W2 from Table I. W2 reads the column S.B5 (its column read
set) and only updates S.B2 (its column write set). Similarly,
the column write set of W5 is {S.B4}, which is disjoint from
the column write set of W2. Hence, even though W2 and W5

modify the same table, they modify different columns and
could be executed in parallel without affecting consistency.

Finally, the Row Read/Write Sets of a transaction T denote
the rows read/written by T based on a primary key or a unique
key. For instance, transaction W1 (see Table I) updates the row
in table R for which A1 = 100 (A1 is the primary key of R),
whereas W4 deletes the row for which A1 = 120. Since W1

and W4 operate on different rows of the same table, they can

also run concurrently without affecting consistency. We restrict
the row sets to include only primary or unique key equality
predicates as those are most popular, simple to identify, and
efficient to compare against each other.

Based on the scope by which an SQL statement affects a
table R, we categorize it in one of three affecting classes:

• Row Affecting Statement (RAS) when it modifies or
accesses particular rows in R;

• Column Affecting Statement (CAS) when it modifies
or accesses some columns of R;

• Table Affecting Statement (TAS) when it modifies or
accesses all columns of R.

Tables I and II showcase several SQL statements along with
their corresponding read/write sets and affecting classes.

B. Statement Replication Procedure

For each transaction T , a Transaction State (or TState) is
built and maintained at the Transactions Buffer. A TState
contains: (i) a TState identifier (TSID) that uniquely identifies
T and is determined by the transaction commit timestamps; (ii)
the SQL write statements of T in the order of execution; (iii)
the read/write (R/W) sets of each statement and the overall T ;
and (iv) the completion operation: commit or rollback;

Hihooi’s Extractor service receives the completed TStates
from the Transactions Buffer and executes them on the local
Extension DB. Its goal is to execute in parallel as many
transactions as possible while ensuring that the local database
replica is consistent with the Primary DB. Our approach uti-
lizes the R/W sets of write transactions to determine whether
some transactions affect the same data items in the database. If
they don’t, we say they are independent. In particular, when
the corresponding table or column or row R/W sets of two
write transactions are disjoint, they are independent.

One important property of the R/W sets is their cumulative
nature. That is, if we take the union of the R/W sets of
multiple statements, we get the R/W sets of a multi-statement
transaction with the same correct semantics. Similarly, we can

Algorithm 1 Parallel execution of transactions at Extension DBs

1: runningState . combined state of running transactions
2: waitingState . combined state of waiting transactions
3: waitQueue . FIFO queue with waiting transaction states
4: function ONNEWTRANSACTION(tsNew)
5: if areIndependent(runningState, tsNew) &
6: areIndependent(waitingState, tsNew) then
7: runningState.merge(tsNew)
8: execute(tsNew)
9: else

10: waitingState.merge(tsNew)
11: waitQueue.enqueue(tsNew)
12: end if
13: end function
14: function ONTRANSACTIONCOMPLETE(tsOld)
15: runningState.remove(tsOld)
16: while waitQueue.isNotEmpty() &
17: areIndependent(runningState, waitQueue.peek()) do
18: tsRun← waitQueue.dequeue()
19: waitingState.remove(tsRun)
20: runningState.merge(tsRun)
21: execute(tsRun)
22: end while
23: end function

combine the R/W sets of two or more multi-statement transac-
tions that are running in parallel to build a transaction state that
represents all running statements. This combined state allows
us to avoid checking whether a new transaction is independent
with each currently running transaction. Instead, we only need
to check whether the new transaction is independent with the
combined running transaction state.

Algorithm 1 shows the two functions that constitute the par-
allel execution algorithm employed by the Extractor, explained
using an example. Suppose the 5 transaction from Table I must
be executed at an Extension DB in that order. Transactions W1

and W2 are independent and will execute in parallel, while W3

is placed in the wait queue since it conflicts with W1. Even
though W4 is independent from the two running transactions
(W1 and W2), it is not independent from the waiting W3 and,
hence, will also be placed in the wait queue. W5 can also run in
parallel as it modifies a different table than W1 and a different
column than W2. When W1 completes, W3 can execute as it
is independent from the running W2, followed by W4. Finally,
the Extractor notifies the Transaction Manager with the latest
applied TSID in sequential order without gaps. Hence, the
Transaction Manager is aware of up to which transaction has
been replayed on the Extension DBs in sequential order.

IV. TRANSACTION ROUTING AND LOAD BALANCING

The write transactions are executed on the Primary DB, are
given a sequential TSID upon completion, and are replicated to
the Extension DBs. An Extension DB is considered consistent
if it has replicated all transactions executed on the Primary
DB. Read transactions can safely be routed either to the
Primary DB or to any consistent Extension DB for execution.
However, the asynchronous replication of write transactions to
the Extension DBs can result in a lag between the Primary DB
and the Extension DBs. In such a scenario, read transactions
must either wait for at least one Extension DB to become

consistent (which introduces latency delays) or be redirected
to the Primary DB (which increases the load on the Primary
DB). In either case, performance and scalability can suffer.

Hihooi implements a novel transaction-level routing and
load balancing algorithm that utilizes R/W sets for directing
transactions to Extension DBs, even if they are not consistent
with the Primary DB. The key idea is that it is safe to route
a read transaction T to an Extension DB if the tables (or
columns/rows) accessed by T will not be modified by the write
transactions that have yet to execute on the Extension DB.
Our approach uses three hash indexes for separately mapping
tables, columns, and rows to the latest write transaction that
modified them. Suppose the 5 write transactions of our running
example shown in Table I completed their execution on the
Primary DB. The table index will show that table S was
last modified by transaction with TSID=15, while the column
index will show that S.B2 was last modified by TSID=12.

The next step in the transaction-level load balancing is to
determine which Extension DBs are consistent for running
an incoming read transaction. The indexes can be used for
finding the TSID of the last transaction that modified any of the
data items accessed by an incoming read transaction. Consider
transaction R3 that accesses columns B2, B3, and B5 of table
S. Based on the content of the hash indexes, only the relevant
column S.B2 has been modified by transaction with TSID=12.
Hence, R3 can execute on any Extension DB that has applied
transactions with TSID=12 or higher.

A. Consistency Levels

Most database engines (e.g., PostgreSQL, Oracle, DB2)
use snapshot isolation (SI) for enforcing consistency [2].
With SI, each transaction operates on its own copy of data
(a snapshot), allowing read transactions to complete without
blocking. Similarly, database replication research has been
focusing on SI and its variants, such as generalized SI, strong
SI, and weak SI [16]. Hihooi works over a set of SI-based
database replicas and offers the illusion of a single SI database
to the client. Hence, it provides a form of Global Strong
Snapshot Isolation (GSSI) [16].

By controlling the replication and routing mechanisms,
Hihooi can offer three additional consistency levels at the
granularity of a database session: (i) Weak SI: write trans-
actions are asynchronously executed on the Extension DBs
and read transactions are sent to any Extension DB regardless
of their consistency; (ii) Replicated SI with Primary Copy
(RSI-PC) provided by Ganymed [3]: write transactions are
asynchronously executed on the Extension DBs and read trans-
actions are sent to any Extension DB that is fully consistent
with the Primary DB (but waits if none is available); (iii) One-
copy Serializability (1SR) provided by C-JDBC [7]: write
transactions are synchronously executed on all Extension DBs
and read transactions are sent to any Extension DB.

V. EXPERIMENTAL EVALUATION

The purpose of our evaluation is to evaluate the system’s
performance, scalability, and elasticity under varying workload

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8

Th
ro

u
gh

p
u

t
(t

xn
s/

se
c)

Number of Extension DBs

Hihooi

(a) Read-Only

0

1000

2000

3000

4000

5000

6000

1 2 4 8
Th

ro
u

gh
p

u
t

(t
xn

s/
se

c)
Number of Extension DBs

Weak-SI Hihooi RSI-PC 1SR

(b) Read-Heavy

0

400

800

1200

1600

2000

1 2 4 8

Th
ro

u
gh

p
u

t
(t

xn
s/

se
c)

Number of Extension DBs

Weak-SI Hihooi RSI-PC 1SR

(c) Balanced

0

200

400

600

800

1000

1 2 4 8

Th
ro

u
gh

p
u

t
(t

xn
s/

se
c)

Number of Extension DBs

Weak-SI Hihooi RSI-PC 1SR

(d) Write-Heavy

Fig. 2: OLTP workload scalability for TPC-C for different workload mixes and consistency levels

types and consistency levels. All experiments were run on a
13-node cluster running CentOS Linux 7.2 with 1 Primary DB,
1 Backup DB, 8 Extension DBs, and 3 client nodes (with 8-
core, 3.2GHz CPU, 64GB RAM, and 2.1TB of HDD storage
per node). For our evaluation, we used the industry standard
OLTP workload TPC-C [17] with up to 48 clients, which
contains complex and write-intensive transactions. The TPC-
C database was populated with 500 warehouses for a total size
of 50GB. The databases were fully replicated to the Extension
DBs. We used PostgreSQL version 9.5.3 in all nodes.

A. OLTP Workload Scalability

This section studies the effectiveness and efficiency of Hi-
hooi in scaling OLTP workloads by measuring their throughput
and latency as we increase the number of Extension DBs.
The comparison is done along two dimensions: (i) for differ-
ent read/write workload mixes (i.e., Read-Only, Read-Heavy,
Balanced, and Write-Heavy) and (ii) for different consistency
levels (i.e., Weak-SI, Hihooi, RSI-PC, and 1SR; recall Section
IV-A). Weak-SI is used to show the upper limit of performance
that any system with consistency guarantees could achieve.
RSI-PC is used by Ganymed, a similar middleware system that
does not offer the type of replication and routing algorithms
that Hihooi boasts, while 1SR (used by C-JDBC) shows the
effect of synchronous replication.

For TPC-C, the Read-Only, Read-Heavy, Balanced, and
Write-Heavy workload mixes were set up as 100%, 95%, 85%,
and 70% of read transactions, respectively. The Write-Heavy
workload represents the default transaction mix of TPC-C.
Figure 2 shows the throughput rates for our workload mixes
and consistency levels for TPC-C. The Read-Only workload
scales linearly as the number of replicas increases; that is, the
throughput doubles each time the number of Extension DBs
doubles. As no writes are performed, there is no difference
between the 4 consistency levels. The trend is similar for the
Read-Heavy workload, with the exception of 1SR after 4 or
more replicas are used. This is expected since the system has
to wait for more replicas to apply all modifications before
being able to serve any subsequent reads. As the percentage
of writes increases in the workload, scalability naturally suffers
for all consistency levels, since all writes are executed on the
Primary DB and more reads have to wait for a consistent
replica. Nonetheless, Hihooi is always able to offer comparable

0

800

1600

2400

3200

4000

1 2 4 8 1 2 4 8 1 2 4 8

Th
ro

u
gh

p
u

t
(t

xn
s/

se
c)

Number of Extension DBs

Parallel Replication Serial Replication

Read-Heavy

0

300

600

900

1200

1500

1 2 4 8 1 2 4 8

Balanced Write-Heavy

Fig. 3: Effect of parallel replication algorithm on TPC-C

performance to Weak-SI and up to 2.6x and 6.7x higher
throughput compared to RSI-PC and 1SR, respectively.

B. Parallel Replication Algorithm

This section studies the performance implications of the par-
allel replication algorithm described in Section III-B compared
to the common approach that executes the write transactions
serially on the replicas. The two approaches have no to little
impact to the throughput of the Read-Only and Read-Heavy
TPC-C workloads (see Figure 3) since very few writes are
applied to the replicas. Note that TPC-C contains 1 TAS and
11 RAS write statements, which are amenable to parallelism.
As the percentage of writes increases for the Balanced and
Write-Heavy workloads, the parallel algorithm has a profound
effect on the throughput (up to 1.7x higher compared to the
serial version) because it enables the Extension DBs to reach
consistency quicker and, hence, be available to serve more
reads. There is a drop in performance for the write-heavy
workload on 8 Extension DBs because the writes in the scaled
up workload overload the Primary DB.

C. Adding and Removing Extension DBs

Finally, we explore the scenario of adding and removing an
Extension DB at run time. We started running the Balanced
workload on Hihooi with 3 Extension DBs. After 20 minutes,
we removed 1 Extension DB to simulate a failure or planned
maintenance operation. Hihooi continued serving the workload
without any issues due to its fault tolerant features, but with a
15% lower throughput, as shown in Figure 4. After 10 minutes,
we restored the Extension DB and observed the throughput

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50

Th
ro

u
gh

p
u

t
(t

xn
s/

se
c)

Time (min)

Parallel Replication Serial Replication

Extension DB
Removal

Extension DB
Addition

Fig. 4: Balanced TPC-C workload throughput after removing
and adding an Extension DB

rate return to its normal level quickly. The Extension DB was
able to serve its first read just 68 seconds after restoration
due to our fine-grained routing algorithm, while it was able to
apply all changes it missed during the outage in 85 seconds.
We repeated the above procedure using the serial replication
approach and observed a lower throughput during the entire
experiment, while it took the Extension DB 125 seconds to
catch up; highlighting once again the benefits of our parallel
replication algorithm.

VI. RELATED WORK

Database replication comes in two forms: master-slave and
multi-master. Each form can be implemented either inside the
database kernel or outside in a middleware layer. The former
approach is heavily invasive and database-engine specific [18].
The middleware approach, also employed by Hihooi, leads
to a seamless separation of concerns, supports unmodified
database systems, and can enable heterogeneous environments.
The Postgres-R [6] multi-master replication system enabled
scalability and 1-copy-serializability, while a later version
offered snapshot isolation [19]. Middle-R [4] was the middle-
ware extension of Postgres-R but still required heavy database
modifications. C-JDBC [7] is also a multi-master middleware
that offers consistency guarantees through table-level locking
at the middleware level. One of the manners that Hihooi differs
from the state of the art is its new architecture that uses an
in-memory distributed storage system for statement replica-
tion, rather than relying on command logging propagation or
complex group communication protocols [2], [16].

Ganymed [3] is a similar master-slave middleware system
that instead blocks a read transaction at the middleware layer
until at least one replica becomes consistent. On the contrary,
Hihooi never blocks any read transactions. Rather, it uses the
transaction R/W sets to find the replicas that are consistent for
each read transaction to run on. Similar to Ganymed, Pgpool-
II [20] is another PostgreSQL-specific replication middleware
solution that ships and applies WAL entries to the replicas.
KuaFu [21] is a primary-backup, row-based replication system
that also offers concurrent log replay by constructing and
utilizing a graph to track write-write dependencies in the
log; unlike Hihooi that relies solely on TSIDs and R/W sets.

To allow read operations to be served on backups, KuaFu
introduces barriers every N transactions to create snapshots
that are consistent with some past states on the primary, unlike
Hihooi that never uses barriers.

VII. CONCLUSIONS

Hihooi’s ability to provide workload scalability and elastic-
ity to existing databases without sacrificing consistency is an
important step towards creating auto-scaling database features.
The parallel replication algorithm allows the replicas to reach
consistency quicker both while the system is running and when
new replicas are added into the system. The routing algorithm
avoids any delays by load balancing read transactions to con-
sistent replicas and can easily adapt to a changing number of
replicas. Given the efficient mechanisms already in place, we
believe Hihooi can jump start interesting research directions
towards workload-driven automated elasticity.

REFERENCES

[1] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The Rise of Big Data on Cloud Computing: Review and
Open Research Issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[2] E. Cecchet, G. Candea, and A. Ailamaki, “Middleware-based Database
Replication: The Gaps between Theory and Practice,” in Proc. of the
ACM SIGMOD. ACM, 2008, pp. 739–752.

[3] C. Plattner and G. Alonso, “Ganymed: Scalable Replication for Transac-
tional Web Applications,” in Proc. of MIDDLEWARE. Springer-Verlag
New York, Inc., 2004, pp. 155–174.

[4] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso,
“MIDDLE-R: Consistent Database Replication at the Middleware
Level,” ACM Trans. Comput. Syst., vol. 23, no. 4, pp. 375–423, 2005.

[5] M. Ronstrom and L. Thalmann, “MySQL Cluster Architecture
Overview,” MySQL, Tech. Rep., 2014.

[6] B. Kemme and G. Alonso, “Don’t Be Lazy, Be Consistent: Postgres-R,
A New Way to Implement Database Replication,” in Proc. of the 26th
VLDB. Morgan Kaufmann Publishers Inc., 2000, pp. 134–143.

[7] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC: Flexible
Database Clustering Middleware,” in Proc. of USENIX ATC. USENIX,
2004, pp. 9–18.

[8] S. Elnikety, S. Dropsho, and F. Pedone, “Tashkent: Uniting Durability
with Transaction Ordering for High-performance Scalable Database
Replication,” ACM SIGOPS Review, vol. 40, no. 4, pp. 117–130, 2006.

[9] J. Gray, P. Helland et al., “The Dangers of Replication and a Solution,”
ACM SIGMOD Record, vol. 25, no. 2, pp. 173–182, 1996.

[10] R. Cattell, “Scalable SQL and NoSQL Data Stores,” ACM SIGMOD
Record, vol. 39, no. 4, pp. 12–27, 2011.

[11] A. Thomson et al., “Calvin: Fast Distributed Transactions for Partitioned
Database Systems,” in Proc. of ACM SIGMOD. ACM, 2012, pp. 1–12.

[12] K. Grolinger et al., “Data Management in Cloud Environments: NoSQL
and NewSQL Data Stores,” JoCCASA, vol. 2, no. 1, p. 22, 2013.

[13] MemSQL, “MemSQL: The Database for Real-time Applications,”
2018. [Online]. Available: https://www.memsql.com/

[14] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory DBMS,”
IEEE Data Eng. Bull, vol. 36, no. 2, pp. 21–27, 2013.

[15] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux Journal,
vol. 2004, no. 124, p. 5, 2004.

[16] Y. Lin, B. Kemme, M. Patiño Martı́nez, and R. Jiménez-Peris, “Middle-
ware Based Data Replication Providing Snapshot Isolation,” in Proc. of
the ACM SIGMOD. ACM, 2005, pp. 419–430.

[17] “TPC-C Benchmark, Revision 5.11.0,” 2010, http://www.tpc.org/tpcc/.
[18] B. Kemme and G. Alonso, “Database Replication: A Tale of Research

Across Communities,” PVLDB, vol. 3, no. 1-2, pp. 5–12, 2010.
[19] S. Wu and B. Kemme, “Postgres-R (SI): Combining Replica Control

with Concurrency Control based on Snapshot Isolation,” in Proc. of the
21st ICDE. IEEE, 2005, pp. 422–433.

[20] J. Maymala, PostgreSQL for Data Architects. Packt Publishing, 2015.
[21] M. Yang et al., “KuaFu: Closing the Parallelism Gap in Database

Replication,” in Proc. of the 29th ICDE. IEEE, 2013, pp. 1186–1195.

