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We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks
based on the number of common neighbors between the nodes. We compare this approach to the HyperMap
method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that
the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a
more accurate inference than the link-based method, unless heuristic periodic adjustments (or “correction steps”)
are used in the latter. The common-neighbors approach is computationally intensive, requiring O(t4) running
time to map a network of t nodes, versus O(t3) in the link-based method. But we also develop a hybrid method
with O(t3) running time, which combines the common-neighbors and link-based approaches, and we explore a
heuristic that reduces its running time further to O(t2), without significant reduction in the mapping accuracy. We
apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve
over time in the similarity space. We further demonstrate the method’s predictive power by forecasting future
links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately
map real networks to their latent geometric spaces, which is an important necessary step toward understanding the
laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.
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I. INTRODUCTION

The main premise of preferential attachment [1] is that
popularity is attractive [2], but similarity is also attractive [3].
When combined, these two attractive forces, i.e., popularity
and similarity, have been shown to form hidden hyperbolic
geometries that drive the evolution of networks [4]. Since
these geometries are hidden, effective, or latent, they must
be inferred from the network structure. Specifically, what
must be inferred are node coordinates in these underlying
hyperbolic spaces. Existing approaches [5,6] to such an
inference are based on the connections (and disconnections)
between the nodes, i.e., on the links that the nodes have
(or do not have). Connected nodes are attracted to each
other, while disconnected nodes repel, and these approaches
are placing nodes into a hyperbolic space based on these
attraction and repulsion forces. Both approaches in [5,6] are
based on maximum likelihood estimation. The approach in [6]
embeds a given network topology into the hyperbolic plane by
maximizing the likelihood that the topology is produced by the
equilibrium hyperbolic network model [7], while the approach
in [5] embeds the network by maximizing the likelihood that
the topology is produced by the hyperbolic model of growing
networks [4]. Both approaches produce similar results, even
though there are fundamental differences between them. In
this paper, we build on the latter approach [5], which is more
recent and simpler to implement.

The work in [4] shows that tradeoffs between popularity
and similarity shape the structure and dynamics of grow-
ing complex networks, and that these tradeoffs in network
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dynamics give rise to hyperbolic geometry. The growing
network model in [4] is essentially a model of random
geometric graphs growing in hyperbolic spaces. Synthetic
graphs grown according to this simple model simultaneously
exhibit many common structural and dynamical characteristics
of real networks. We call the model in [4] the popularity ×
similarity optimization (PSO) model.

Given the ability of the PSO model to construct synthetic
growing networks that resemble real networks across a wide
range of structural and dynamical characteristics, the work
in [5] showed how to reverse this synthesis, and given a real
network, how to map (embed) the network into the hyperbolic
plane in a way congruent with the PSO model. Specifically,
the mapping method of [5], called HyperMap, replays the
network’s geometric growth, estimating at each time step
the hyperbolic coordinates of new nodes by maximizing the
likelihood of the network snapshot in the model. In the
inferred polar coordinates of nodes, the radial coordinate r

can be associated with node popularity, while the angular
coordinate θ is the node coordinate in the similarity space
abstracted by a circle. HyperMap has been applied to the
autonomous systems (ASs) topology of the real Internet in [5],
where it was shown that (i) the method can identify soft
communities of ASs belonging to the same geographic region,
even though the method is completely geography-agnostic;
(ii) the method can predict missing links between ASs with
high precision, outperforming popular existing methods; and
(iii) the method can construct a highly navigable Internet
map—greedy forwarding in the map can reach destinations
with more than 90% success probability and low stretch.

Here we introduce and explore a method for inferring the
node similarity coordinates, and we release its implementation
to the public [8]. This method differs from the one in [5]
in that it is not based on the links that the nodes have or
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do not have. Instead, it is based on the number of common
neighbors between the nodes. The method is inspired by the
observation that the number of common neighbors between
two nodes is a measure of similarity between the nodes; in
general, the higher the number of common neighbors between
two nodes is, the more similar the two nodes are, i.e., the
smaller is their similarity distance [9,10]. We call the approach
in [5] the link-based approach, and the approach considered
here is the common-neighbors approach. We compare the two
approaches and find that for high degree nodes, the common-
neighbors approach yields a more accurate inference than the
link-based method, unless heuristic periodic adjustments (or
“correction steps” [5]) are used in the latter. On the other hand,
the common-neighbors approach is computationally intensive,
requiring O(t4) running time to map a network of t nodes,
versus O(t3) in the link-based method.

Based on these observations, we introduce a hybrid method
with O(t3) running time, which combines the common-
neighbors and link-based approaches, and we explore a
heuristic that can reduce its running time further to O(t2)
without significantly sacrificing the embedding accuracy. We
apply this method to snapshots of the real Internet to reveal
how soft communities of ASs evolve over time in similarity
space. We also demonstrate the method’s predictive power by
forecasting future links between ASs. Taken altogether, our
results advance our understanding of how to efficiently and
accurately map real networks to their latent hyperbolic spaces,
which is an important necessary step toward understanding the
laws that govern the dynamics of nodes in these spaces, and
the fine-grained dynamics of network connections.

The rest of the paper is organized as follows. In Sec. II we
review the extended PSO (E-PSO) model from [5] and the
details of the HyperMap method that we need in this paper.
In Sec. III we show how the angular coordinates of nodes can
be inferred using the common-neighbors approach, and we
describe the hybrid method. In Sec. IV we describe how to
speed up the method, and in Sec. V we validate our results
in synthetic networks. In Sec. VI we apply the hybrid method
to the AS Internet. In Sec. VII we discuss other relevant
work, and in Sec. VIII we conclude with a discussion of open
problems and future work.

II. PRELIMINARIES

The E-PSO model of growing networks was introduced
in [5] for HyperMap development purposes. As its name
suggests, this model is a modification of the PSO model in [4].
The E-PSO model constructs growing networks using external
links only, while being equivalent to the generalized PSO
model in [4] that uses both external and internal links [5].
External links connect new nodes to existing nodes, while
internal links appear between existing nodes only. Given a sin-
gle snapshot of the topology of a real network, there is no way
to distinguish external links from internal links. The E-PSO
model sidesteps this obstacle, and it helps to map a given real
network topology by replaying its geometric growth, treating
all links in the topology as if they were external [5]. Below, we
first review the E-PSO model and then proceed to HyperMap,
which is based on this model. We limit the exposition only to
the basic details that we need in the rest of the paper.

A. The E-PSO model

The E-PSO model has five input parameters: m � 0, L � 0,
β ∈ (0,1], T ∈ [0,1), and ζ > 0. Parameters m and L are the
rates at which external and internal links appear. (We will
explain shortly how we compute them in a real network.) These
two parameters appear inside Eq. (4) below, and they define the
average node degree in the network, k̄ ≈ 2(m + L). Parameter
β defines the exponent γ = 1 + 1/β � 2 of the power-law
degree distribution P (k) ∼ k−γ in the network. Temperature T

controls the average clustering c̄ [11] in the network, which is
maximized at T = 0 and decreases to zero nearly linearly with
T ∈ [0,1). Parameter ζ = √−K , where K is the curvature of
the hyperbolic plane. As will be explained, changing ζ rescales
the node radial coordinates. This rescaling parameter does not
affect any topological properties of networks generated by the
model. Therefore, it can be set to any value in the model, e.g.,
ζ = 1, without loss of generality. Having these parameters
and the final size of the network t > 0 specified, the E-PSO
model constructs a growing scale-free network up to t nodes
according to the following E-PSO model definition:

(i) Initially the network is empty.
(ii) Coordinate assignment and update as follows:

(a) At time i = 1,2, . . . ,t , new node i is added to the
hyperbolic plane at polar coordinates (ri,θi), where radial
coordinate ri = 2

ζ
ln i, while the angular coordinate θi is

sampled uniformly at random from [0,2π ].
(b) Each existing node j = 1,2, . . . ,i − 1 moves, in-

creasing its radial coordinate according to rj (i) = βrj + (1 −
β)ri .

(iii) Creation of edges: node i connects to each existing
node j = 1,2, . . . ,i − 1 with probability pij ≡ p(xij ) given
by

p(xij ) = 1

1 + e
ζ

2T
(xij −Ri )

. (1)

In the last expression, xij is the hyperbolic distance between
nodes i and j [12],

cosh ζxij = cosh ζ ri cosh ζ rj (i)

− sinh ζ ri sinh ζ rj (i) cos θij ,

where θij = π − |π − |θi − θj ||, (2)

while Ri is given by

Ri = ri − 2

ζ
ln

[
2T

sin T π

Ii

m̄i(t)

]
, (3)

with Ii = 1
1−β

(1 − i−(1−β)). Equation (3) is derived from the
condition that the expected number of old nodes j < i that i

connects to, denoted by m̄i(t), is

m̄i(t) =m + 2L(1 − β)

(1 − t−(1−β))2(2β − 1)

×
[(

t

i

)2β−1

− 1

]
[1 − i−(1−β)]. (4)

The radial coordinate of a node abstracts its popularity. The
smaller the radial coordinate of a node, the more popular the
node is, and the more likely it attracts new connections. The an-
gular distance between two nodes abstracts their similarity. The
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1: Sort node degrees in decreasing order k1 > k2 > . . . > kt

with ties broken arbitrarily.
2: Call node i, i = 1, 2, . . . , t, the node with degree ki.
3: Node i = 1 is born, assign to it initial radial coordinate

r1 = 0 and random angular coordinate θ1 ∈ [0, 2π].
4: for i = 2 to t do
5: Node i is born, assign to it initial radial coordinate

ri = 2
ζ

ln i.
6: Increase the radial coordinate of every existing node

j < i according to rj(i) = βrj + (1 − β)ri.
7: Assign to node i angular coordinate θi maximizing Li

L

given by Equation (5).
8: end for

FIG. 1. The HyperMap embedding algorithm.

smaller this distance, the more similar the two nodes are, and
the more likely they are connected. The hyperbolic distance
xij is then a single-metric representation of a combination
of the two attractiveness attributes, namely radial popularity
and angular similarity. The connection probability p(xij ) is
a decreasing function of xij , meaning that new connections
take place by optimizing tradeoffs between popularity and
similarity [4]. It has been shown [5] that the E-PSO model
can reproduce not only the degree distribution and clustering
of real networks such as the AS Internet, but also several
other important properties. Given the ability of the model
to construct growing synthetic networks that resemble real
networks, Ref. [5] then showed how to reverse this synthesis,
and given a real network, how to map (embed) the network
into the hyperbolic plane in a way congruent with the E-PSO
model. The mapping method, HyperMap, is described next.

B. HyperMap

HyperMap is based on maximum likelihood estimation
(MLE) and is fully specified in Fig. 1. On its input it takes the
network adjacency matrix αij (αij = αji = 1 if there is a link
between nodes i and j , and αij = αji = 0 otherwise), and the
network parameters m,L,γ,T ,ζ . It then computes radial and
angular coordinates ri(t),θi for all nodes i � t in the network.

HyperMap first estimates the MLE appearance (or birth)
times of nodes i = 1,2, . . . ,t . As shown in [5], the higher the
degree of a node in the E-PSO model, the earlier is its MLE
appearance time. Therefore, HyperMap uses the following
procedure for finding the MLE of the node appearance times in
a given network with t nodes. It sorts all nodes in decreasing
order of their degrees k1 > k2 > · · · > kt , with ties broken
arbitrarily, and sets their MLE appearance times i = 1,2, . . . ,t

in the same order. That is, the node with the largest degree k1 is
expected to appear first, i = 1, the second largest degree node
k2 appeared second, i = 2, and so on. The node born at time i

is called node i.
Having a sequence of MLE node birth times, HyperMap

replays the hyperbolic growth of the network in accordance
with the E-PSO model as follows. When a node is born at
time 1 � i � t , it is assigned an initial radial coordinate ri =
2
ζ

ln i, and every existing node j < i moves increasing its radial
coordinate according to rj (i) = βrj + (1 − β)ri . The method
assigns to a new node i > 1 the angular coordinate θi that

maximizes its local likelihood,

Li
L =

∏
1�j<i

p(xij )αij [1 − p(xij )]1−αij . (5)

This likelihood is a function of θi , since xij depends on θi [see
Eq. (2)], p(xij ) depends on xij [see Eq. (1)], and Li

L depends
on p(xij ). The product in Eq. (5) goes over all the old nodes
j < i. The likelihood Li

L is called local as it depends only
on the connections (and disconnections) between new node i

and existing nodes j < i. For example, if new node i = 4 is
connected to nodes 1,2 but not to node 3, i.e., α41 = 1,α42 =
1,α43 = 0, then L4

L would be L4
L = p(x41)p(x42)[1 − p(x43)].

We use the subscript “L” to emphasize that Li
L depends on the

links between new node i and existing nodes j < i, i.e., it is
a link-based approach. In the next section, we will derive an
alternative local likelihood,Li

CN, which depends on the number
of common neighbors between new node i and existing nodes
j < i.

The maximization of Li
L is performed numerically by

sampling the likelihood Li
L at different values of θ in [0,2π ]

separated by intervals �θ = 1
i

and then setting θi to the value
of θ that yields the largest value of Li

L. Since to compute Li
L

for a given θ we need to compute the connection probability
between node i and all existing nodes j < i, we need a total of
O(i2) steps to perform the maximization. If there are t nodes
in total, HyperMap needs O(t3) running time to map the full
network.

Specifying input parameters. Parameter ζ > 0 can be set
to any value, e.g., ζ = 1. As mentioned, changing the value
of this parameter corresponds to radial coordinate rescaling.
Specifically, the radial coordinates of nodes will be rescaled
by the factor ζ , since, as can be seen by steps 5 and 6
in Fig. 1, at the final time i = t , rj (t) = βrj + (1 − β)rt =
2β

ζ
ln j + 2(1−β)

ζ
ln t,j � t . Furthermore, the likelihood Li

L in
Eq. (5) does not depend on ζ , as it cancels out in the connection
probability p(xij ) in Eq. (1). That is, different values of ζ

will yield exactly the same angular coordinates. Parameter
m can be obtained from historical data of the evolution of
the network. If such data are available, then m is the average
number of connections that nodes have once they first appear
in the data. If no historical data are available, m can be set, as an
approximation, to the minimum observed node degree in the
network. Given the average node degree k̄ in the network, and
knowing m and k̄, we get L = k̄−2m

2 . The power-law exponent
γ can be obtained from the degree distribution of the network,
while parameter T is found experimentally [5]. We emphasize
that the parameters for HyperMap come directly from the
observation of the real network. With these five parameters
(m,L,γ,T ,ζ ), and the network adjacency matrix αij , Hyper-
Map infers 2t hyperbolic node coordinates in a network of
t nodes (a radial and angular coordinate for each node), and
consequently O(t2) hyperbolic distances between nodes.

III. INFERRING NODE SIMILARITY COORDINATES
USING THE NUMBER OF COMMON NEIGHBORS

We now show how the angular (similarity) coordinates of
nodes can be inferred using the number of common neighbors
between new and old nodes instead of the connections and
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disconnections between them. Specifically, we first derive an
alternative local likelihood, Li

CN, which uses the observed
number of common neighbors between each new node i and
each existing node j < i at final time t . Then, we use this
likelihood in place of Li

L in Eq. (5) in order to infer the angular
coordinate of each node.

In Sec. V, we show that for small i’s, i.e., for nodes that
appear at early MLE times, which are the high degree nodes,
Li

CN yields a more accurate angular coordinate inference than
Li

L. This is because, for all node pairs i,j , j < i, Li
CN utilizes

more information, since it uses the final number of common
neighbors between the pairs. That is, it considers the full
network adjacency matrix, i.e., the network adjacency matrix
at the final time t , and it uses the number of common neighbors
between the node pairs at that time. In contrast, Li

L in Eq. (5)
uses less information, since at each time i � t it considers
only the connections and disconnections between node i and
old nodes j < i. To derive Li

CN, we first need to compute
the distribution of the number of common neighbors between

node pairs in the E-PSO model, which is the task we perform
next.

A. Distribution of the number of common neighbors

Consider a network that has grown up to t nodes according
to E-PSO (Sec. II A), where nodes are numbered according
to the order in which they appear. Consider two nodes i,j

with j < i and a third node k. The initial radial coordinates
of these nodes are ri = 2

ζ
ln i, rj = 2

ζ
ln j , and rk = 2

ζ
ln k. We

first need to find p(i,j,θi,θj ; k), which is the probability that i

and j are both connected to k given their angular coordinates
θi,θj . Below, we distinguish three cases and compute cor-
responding probabilities p1(i,j,θi,θj ; k), p2(i,j,θi,θj ; k), and
p3(i,j,θi,θj ; k).

Case 1: i > j > k. In this case, the connections to k happen
when j and i first appear, i.e., at times j and i respectively.
Therefore,

p1(i,j,θi,θj ; k) = 1

2π

∫ 2π

0

1

1 + e
ζ

2T
(xjk−Rj )

1

1 + e
ζ

2T
(xik−Ri )

dθk,

where xjk = 1

ζ
arccosh[cosh ζ rj cosh ζ rk(j ) − sinh ζ rj sinh ζ rk(j ) cos θjk],

xik = 1

ζ
arccosh[cosh ζ ri cosh ζ rk(i) − sinh ζ ri sinh ζ rk(i) cos θik], (6)

Rj = rj − 2

ζ
ln

[
2T

sin T π

Ij

m̄j (t)

]
, Ri = ri − 2

ζ
ln

[
2T

sin T π

Ii

m̄i(t)

]
,

rk(j ) = βrk + (1 − β)rj , rk(i) = βrk + (1 − β)ri .

Case 2: i > k > j . Here the connection between i and k happens when i first appears, i.e., at time i, and the connection between
j and k happens when k first appears, i.e., at time k. Thus,

p2(i,j,θi,θj ; k) = 1

2π

∫ 2π

0

1

1 + e
ζ

2T
(xkj −Rk )

1

1 + e
ζ

2T
(xik−Ri )

dθk,

where xkj = 1

ζ
arccosh[cosh ζ rk cosh ζ rj (k) − sinh ζ rk sinh ζ rj (k) cos θjk],

xik = 1

ζ
arccosh[cosh ζ ri cosh ζ rk(i) − sinh ζ ri sinh ζ rk(i) cos θik], (7)

Rk = rk − 2

ζ
ln

[
2T

sin T π

Ik

m̄k(t)

]
, Ri = ri − 2

ζ
ln

[
2T

sin T π

Ii

m̄i(t)

]
,

rj (k) = βrj + (1 − β)rk, rk(i) = βrk + (1 − β)ri .

Case 3: k > i > j . In this final case, both connections with k happen when k appears, i.e., at time k. Therefore,

p3(i,j,θi,θj ; k) = 1

2π

∫ 2π

0

1

1 + e
ζ

2T
(xkj −Rk )

1

1 + e
ζ

2T
(xki−Rk )

dθk,

where xkj = 1

ζ
arccosh[cosh ζ rk cosh ζ rj (k) − sinh ζ rk sinh ζ rj (k) cos θjk],

(8)

xki = 1

ζ
arccosh[cosh ζ rk cosh ζ ri(k) − sinh ζ rk sinh ζ ri(k) cos θik],

Rk = rk − 2

ζ
ln

[
2T

sin T π

Ik

m̄k(t)

]
, rj (k) = βrj + (1 − β)rk, ri(k) = βri + (1 − β)rk.
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The integrals in Eqs. (6)–(8) can only be computed numerically. Since the connection events are statistically independent, the
number of common neighbors between nodes i and j , j < i, given their angles θi,θj , is a sum of independent Bernoulli trials
with different success probabilities, given by Eqs. (6)–(8). Therefore, by the central limit theorem [13], for sufficiently large
network sizes t , the distribution of the number of common neighbors nij between i and j is approximately normally distributed,
i.e., its probability density is approximately

f (nij |θi,θj ) = 1

σ (i,j,θi,θj )
√

2π
e
− [nij −μ(i,j,θi ,θj )]2

2σ2(i,j,θi ,θj ) , (9)

where its mean μ(i,j,θi,θj ) and variance σ 2(i,j,θi,θj ) are

μ(i,j,θi,θj ) =
j−1∑
k=1

p1(i,j,θi,θj ; k) +
i−1∑

k=j+1

p2(i,j,θi,θj ; k) +
t∑

k=i+1

p3(i,j,θi,θj ; k), (10)

σ 2(i,j,θi,θj ) =
j−1∑
k=1

p1(i,j,θi,θj ; k)(1 − p1(i,j,θi,θj ; k)) +
i−1∑

k=j+1

p2(i,j,θi,θj ; k)(1 − p2(i,j,θi,θj ; k))

+
t∑

k=i+1

p3(i,j,θi,θj ; k)(1 − p3(i,j,θi,θj ; k)). (11)

To compute μ(i,j,θi,θj ) and σ (i,j,θi,θj ) we use the fact that
the mean of a Bernoulli random variable with success prob-
ability p is p, and its variance is p(1 − p). The computation
of μ(i,j,θi,θj ) and σ (i,j,θi,θj ) for each i,j pair requires O(t)
steps.

B. Likelihood and likelihood maximization

We are now ready to derive the likelihood Li
CN that

we can use in place of Li
L in Eq. (5) in order to infer

the node angular coordinates. Consider new node i � t in
a network that grows according to E-PSO up to time t .
We denote by Li

1 ≡ L(θi |ri,{rj (i),θj },{nt
ij },m,L,γ,T ,ζ )j<i

the likelihood that i’s angular coordinate takes value θi ,
given its ri , the coordinates of the old nodes {rj (i),θj } ≡
{r1(i),θ1,r2(i),θ2, . . . ,ri−1(i),θi−1}, the number of common
neighbors between i and each old node j < i at the final time
t , {nt

ij } ≡ {nt
i1,n

t
i2, . . . ,n

t
ii−1}, and the network parameters

m,L,γ,T ,ζ . Since the distribution of the angular coordinates
is uniform on [0,2π ], we can rewrite Li

1 using Bayes’ rule as

Li
1 = 1

2π

Li
2

Li
3

, (12)

where Li
2 ≡ L({nt

ij }|ri,θi,{rj (i),θj },m,L,γ,T ,ζ )j<i is the
likelihood to have the numbers of common neighbors {nt

ij },
if the angular coordinate of node i has value θi , con-
ditioned on its radial coordinate, the coordinates of the
old nodes, and the network parameters. Likelihood Li

3 ≡
L({nt

ij }|ri,{rj (i),θj },m,L,γ,T ,ζ )j<i , independent of θi , is the
probability that i has the numbers of common neighbors with
old nodes specified by {nt

ij }, conditioned as shown by notation.
We are looking for the angle θ∗

i that maximizes the
likelihood Li

1 in Eq. (12), or equivalently, Li
2. We can compute

Li
2 using Eq. (9),

Li
2 =

∏
1�j<i

f
(
nt

ij |θi,θj

) ≡ Li
CN. (13)

The product goes over all the old nodes j < i. Equation (13)
gives the likelihood Li

CN that we can use in HyperMap in
place of Li

L in Eq. (5), where nt
ij is the observed number of

common neighbors between nodes appearing at MLE times
i,j , computed from the given network adjacency matrix αij .
Note that maximizing Li

CN is equivalent to maximizing its
logarithm lnLi

CN,

lnLi
CN = C −

i−1∑
j=1

ln σ (i,j,θi,θj )

−
i−1∑
j=1

[
nt

ij − μ(i,j,θi,θj )
]2

2σ 2(i,j,θi,θj )
, (14)

where C = (i − 1) ln 1√
2π

, independent of θi .

C. Li
CN versus Li

L, and the hybrid method

As withLi
L, the maximization ofLi

CN can only be performed
numerically. This can be done in the same way as with Li

L
(Sec. II B), i.e., by sampling the likelihood Li

CN at different
values of θ in [0,2π ] separated by intervals �θ = 1

i
, and then

setting θ∗
i to the value of θ that yields the largest value of

Li
CN. (To be more precise, we will be using sampling intervals

�θ = min{0.01, 1
i
}). Since, to compute Li

CN for a given θ we
need to compute μ(i,j,θi,θj ) and σ (i,j,θi,θj ) between node i

and every existing node j < i, we need a total of O(i2t) steps
to perform the maximization of Li

CN. Therefore, if there are
t nodes in total, HyperMap with Li

CN requires O(t4) running
time to map the full network, versus O(t3) with Li

L.
Likelihoods Li

CN and Li
L yield different results for the first

few nodes appearing at early MLE times. Specifically, all nodes
i for which their average number of connections to previous
nodes in Eq. (4) is m̄i(t) � i − 1 are expected to be connected
to all previous nodes j � i − 1 with a high probability. This
condition holds for high degree nodes appearing at early MLE
times, rendering their exact angular coordinate inference with
Li

L infeasible. This is because Li
L uses the connections and
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disconnections between new and old nodes in order to place
the nodes at the right angles; if new node i is connected to all
previous nodes j < i with high probability, then large zones of
different angular coordinates are all quite likely with Li

L. This
effect was noted in [5]. In contrast, Li

CN can accurately infer
the angular coordinates of nodes appearing early because it
effectively utilizes “future” connectivity information as well,
i.e., the number of common neighbors between the nodes at
the final time t . This important difference between Li

CN and
Li

L is illustrated in Sec. V. We note that since the inference of
the angular coordinates of new nodes appearing at later MLE
times depends on the inferred angles of high degree nodes
appearing early, then if the latter are not accurately inferred,
the former will not be accurately inferred either.

Given the angular coordinates of high degree nodes ap-
pearing at early MLE times, the inference of the angular
coordinates of nodes appearing at later MLE times, e.g., of
nodes i for which m̄i(t) < i − 1, using eitherLi

CN orLi
L, yields

similar results, i.e., the two likelihoods infer approximately
the same angular coordinates for later nodes. This effect is
also illustrated in Sec. V, and it means that one can use
the following hybrid approach: use Li

CN for the first nodes
i for which m̄i(t) � i − 1, and then use Li

L for the rest of the
nodes for which m̄i(t) < i − 1. The benefit of this approach is
running time, as the number of nodes for which m̄i(t) � i − 1
is usually quite small, e.g., on the order of a few tens of nodes.
Therefore, HyperMap with this hybrid approach will still have
O(t3) running time. In the next section, we describe a simple
heuristic to reduce this running time to O(t2).

D. Hybrid method versus Li
L with correction steps

It was shown in [5] that the accuracy of HyperMap can
be improved by occasionally running “correction steps” right
after step 7 in Fig. 1. Specifically, at some predefined set of

times i, we visit each existing node j � i, and having the
coordinates of the rest of the nodes l � i, l �= j , we update j ’s
angle to the value θ ′

j that maximizes

L̃j

L =
∏

1�l�i

p(xjl)
αjl [1 − p(xjl)]

1−αjl , l �= j, (15)

where xjl is the hyperbolic distance between j and l when
the youngest of the two nodes appeared, and p(xjl) is given
by Eq. (1), using in it Rj if j > l or Rl if j < l. It has been
observed in [5] that these correction steps are beneficial when
run at relatively small times i. This observation fully agrees
with our results in this paper.

These correction steps are a heuristic that tries to effectively
recompute improved angles for the first (high degree) nodes
by considering not only the connections to their previous
nodes, but also connections to nodes that appear later, i.e.,
future connectivity information, as in the common-neighbors
approach. In Sec. V, we show that HyperMap with Li

L and
correction steps yields similar results to the hybrid method
that does not use correction steps.

IV. SPEEDING UP THE METHOD

As explained in Sec. III C, the running time of HyperMap
with either the hybrid or link-based approaches is O(t3). Here
we introduce a simple heuristic that reduces this running time
to O(t2) without significantly sacrificing embedding accuracy,
as we verify in the next section. We first observe that connected
nodes are attracted to each other, and they are expected to
be placed close to each other in the angular space [6]. This
means that for each node i, we can get an initial estimate for
its angular coordinate, θ init

i , by considering only the previous
nodes j < i inLi

L [Eq. (5)] that are its neighbors. This requires
only O(ki) steps, where ki is i’s degree, and ki = O(k̄) for
sufficiently large i. That is, we can estimate θ init

i by maximizing

0 1 2 3 4 5 6
0

1

2

3

4

5

6

real angle

in
fe

rr
ed

 a
ng

le

(a) T = 0.05, Li
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(d) T = 0.05, Li
L.
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(e) T = 0.4, Li
L.
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(f) T = 0.7, Li
L.

FIG. 2. (Color online) Inferred vs real angles (in radians) for synthetic networks with t = 5000 nodes and parameters m = 1.5, L = 2.5,
γ = 2.1, and T as shown in the captions. The plots juxtapose the inferred against the real angles for the first 100 nodes, i.e., the nodes that
appear at MLE times 1 � i � 100. In (a)–(c) the common-neighbors method is used, while in (d)–(f) the link-based method is used.
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the likelihood

Li
L-init =

∏
1�j<i,αij =1

p(xij ), (16)

where the product goes over all previous nodes j < i that are
i’s neighbors. The maximization of Eq. (16) can be performed
numerically by sampling the likelihood at intervals �θ = 1

i

as before, yielding a total running time of O(k̄i) = O(i) to
find θ init

i .
Once we estimate θ init

i , we can consider a region around it,
[θ init

i − C
i
,θ init

i + C
i

], where 0 < C 
 t is a constant, and we
set the angular coordinate of node i, θi , to the value of θ that
yields the largest value of Li

L [Eq. (5)] in this region. Since we
sample the likelihood at intervals �θ = 1

i
, we need O(C) steps

to perform this maximization. Taken altogether, at sufficiently
large times i � C we need O(iC) = O(i) steps to find θi .

Therefore, if we have t � C nodes in total, the total running
time to find their angles following this procedure is O(t2). The
larger the value of C, the better the results are expected to
be in general, as we are searching for the optimal value of θi

over a larger region, but the procedure will also be slower. We
validate this speedup heuristic in the next section, where we
set C = 200, and we show that it produces good results.

V. VALIDATION

In this section, we validate our mapping method and
its variations. To do so, we first grow synthetic networks
according to E-PSO up to t = 5000 nodes, with m = 1.5, L =
2.5, γ = 2.1, ζ = 1, and T = 0.05,0.4,0.7. Similar results
hold for other parameter values. Then, we pass these synthetic
networks to HyperMap, using their corresponding m,L,γ,T ,ζ

values, and we compute radial and angular coordinates for the

FIG. 3. (Color online) Likelihood landscapes for different nodes in a synthetic network with t = 5000 nodes and parameters m = 1.5,
L = 2.5, γ = 2.1, and T = 0.4. The plots show the likelihoods Li

CN, Li
L [Eqs. (13) and (5)] and the log-likelihoods lnLi

CN, lnLi
L, for nodes

appearing at MLE times i = 5, 10, 25, 30, 35, and 40, as a function of the angular coordinate θ (in radians). The vertical line in each plot shows
the inferred angle θ inferred (in radians), which always corresponds to the global maximum of the likelihood.
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(a) T = 0.05, hybrid. (b) T = 0.4, hybrid. (c) T = 0.7, hybrid.

(d) T = 0.05, Li
L. (e) T = 0.4, Li

L. (f) T = 0.7, Li
L.

FIG. 4. (Color online) Inferred vs real angles (in radians) for all the nodes in the synthetic networks of Fig. 2. In (a)–(c) the hybrid method
is used, while in (d)–(f) the link-based method is used.

nodes, using either Li
CN (the common-neighbors method), Li

L
(the link-based method), or the hybrid method. We consider
the real Internet in the next section.

Inferred versus real angles for nodes appearing at early
MLE times. Figure 2 juxtaposes the inferred angles against the
real angles for the first 100 nodes, i.e., for the nodes that appear
at MLE times 1 � i � 100 for each considered network, when
Li

CN or Li
L is used. We observe that the common-neighbors

method is more accurate at inferring the angles of these
first nodes. The reason for this was explained in Sec. III C.
Specifically, we see in Figs. 2(a)–2(c) that Li

CN can infer the
real angles of the nodes quite accurately, subject only to a
global phase shift. This phase shift can take any value in
[0,2π ], and it is due to the rotational symmetry of the model.
The exact value of this shift is not important, and it depends
on the initialization of the angle of the first node in HyperMap,
which can be any random value in [0,2π ] (cf. step 3 in Fig. 1).

Likelihood landscapes. To gain a deeper understanding
of the behavior of Li

CN and Li
L, we show in Fig. 3 the

corresponding likelihood landscapes for different nodes that
appear at early MLE times, i = 5,10,25,30,35,40. To enable
comparison between the two methods, the link-based likeli-
hood Li

L is computed after fixing the angles of the old nodes
j < i to the angles inferred by the common-neighbors method.

We observe that at small i, i = 5,10, Li
CN and Li

L behave
quite differently, achieving their maximum at different values
of θ . As discussed in Sec. III C, nodes appearing at early
MLE times are connected to all previous nodes with high
probability. Therefore, large zones of angular coordinates are
nearly equally likely according to Li

L, which is not the case
with Li

CN. This difference is evident in the first two rows of
Fig. 3, showing the landscapes of L5

CN, L10
CN and L5

L, L10
L . We

also observe thatLi
L of all possible angular coordinates is quite

high for early nodes: L5
L of any angle is above 99%, and L10

L
is above 92% for all angles.

At larger times i, i � 25, the two likelihoods achieve
their maximum around the same angle, while their landscapes
vary in a somewhat similar manner. This justifies the hybrid
approach of Sec. III C, which uses Li

CN to infer the angles of
the first i nodes for which m̄i(t) � i − 1, and then Li

L to infer
the angles of the rest of the nodes. For the considered networks,
relation m̄i(t) � i − 1 holds only for the first 33 nodes, while
for the AS Internet snapshots in the next section it holds only
for the first 36–40 nodes.

Inferred versus real angles for all the nodes. Figure 4
juxtaposes the inferred angles against the real angles for all
nodes in each considered network, when the hybrid and link-
based methods are used. We observe that (i) the hybrid method
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(a) T = 0.05. (b) T = 0.4. (c) T = 0.7.

FIG. 5. (Color online) Connection probabilities with inferred (radial and angular) node coordinates obtained by the hybrid and link-based
methods, and with real node coordinates. The results correspond to the mappings of Fig. 4.
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TABLE I. Logarithmic losses in the mappings of Fig. 4.

Network LLreal LLinf, hybrid LLinf, link-based LLrand rLL, hybrid rLL, link-based

T = 0.05 1.1 × 104 9.6 × 104 24.8 × 104 123 × 104 e1134000 e982000

T = 0.4 2.4 × 104 3.5 × 104 5.4 × 104 17 × 104 e135000 e116000

T = 0.7 4.1 × 104 4.4 × 104 5.2 × 104 11 × 104 e66000 e58000

is more accurate than the link-based method, as expected; (ii)
Figs. 4(a)–4(c) are similar to Figs. 2(a)–2(c), meaning that
as long as the angular coordinates of the first few nodes are
accurately inferred, then the angular coordinates of the rest of
the nodes will also be accurately inferred; (iii) the inference is
in general better at lower temperatures T ; and (iv) the inference
is in general better for higher degree nodes appearing at early
MLE times; cf. Figs. 2(a)–2(c) and 4(a)–4(c).

Connection probability. In Fig. 5 we report the connection
probability, which is the probability that there is a link between
a pair of nodes located at hyperbolic distance x, using real
and inferred node coordinates. This probability is computed
as the ratio of the number of connected node pairs to the total
number of pairs of nodes located at distance x. From the figure,
we observe that all inferred connection probabilities are close
to the real ones, except for some discrepancies at their tails,
which are more pronounced at lower T ’s. Furthermore, we see
that the results with the hybrid method are only slightly better
compared to the link-based method in terms of the connection
probability. This suggests that the link-based method also
produces relatively good mappings, even though it cannot infer
as well the real angular coordinates.

We also quantify the quality of the obtained mappings
using two other metrics: (i) the logarithmic loss, and (ii) the
performance of greedy routing.

Logarithmic loss. The logarithmic loss is a quality metric
for statistical inference defined as LL = −lnL, where L in our
case is the global likelihood

L =
∏

1�j<i�t

p[xij (t)]αij {1 − p[xij (t)]}1−αij . (17)

The product goes over all node pairs i,j in the network, xij (t)
is the hyperbolic distance between pair i,j , and p[xij (t)] =
1/(1 + e

ζ

2T
[xij (t)−Rt ]) is the connection probability. We use

LL to quantify the quality of the inference of the node
angular coordinates. Specifically, we first compute LL using
the inferred node coordinates {ri(t),θi}, and then we compare
the result to the case in which LL is computed using the
inferred ri(t)’s and random θi’s drawn uniformly from [0,2π ].
We denote the former by LLinf and the latter by LLrand. The
smaller the LLinf compared to LLrand, the better the quality of
the mapping. In particular, the ratio rLL = e−LLinf

/e−LLrand =
e(LLrand−LLinf) is the ratio of the likelihood with the inferred

angular coordinates to the likelihood with random angular
coordinates. The higher this ratio, the better the mapping
quality. Table I reports the logarithmic losses LLinf, LLrand,
the ratio rLL, as well as LLreal, which is the logarithmic
loss if we use the real radial and angular coordinates of
nodes. We observe that (i) the hybrid method yields lower
logarithmic losses compared to the link-based method, which
is expected since it infers the node angular coordinates more
accurately; and (ii) the logarithmic losses for both methods are
significantly lower than those obtained with random angular
coordinates, and closer to the logarithmic losses obtained with
the real coordinates. These results suggest that the link-based
method yields relatively good results, but the hybrid approach
is better, as expected.

Performance of greedy routing. One specific class of
network functions that are impossible without underlying
geometry are efficient targeted transport processes without
global knowledge of the network structure. Many real net-
works have this routing or navigation function in common;
in some networks, including the Internet, this function is
their primary function [14]. Therefore, navigability can be
used as an alternative indirect metric of embedding quality.
Navigability of an embedding is also of independent interest
for some applications, such as Internet routing [6]. A network
embedded in a geometric space is said to be navigable if greedy
routing (GR) is efficient according to the metrics considered
below. In GR, a node’s address is its coordinates in the space,
and each node knows only the addresses of its neighbors and
the destination node address of a “packet.” Upon receipt of
such a packet, the GR node, if it is not a destination, forwards
the packet to its neighbor closest to the destination in the
geometric space, and it drops the packet if a local minimum
loop is detected, i.e., if this neighbor is the same as the previous
node visited by the packet.

We evaluate the efficiency of GR in the synthetic net-
works of Fig. 4 using both the HyperMap-inferred (hybrid,
link-based) and the real node coordinates. We consider the
following two GR efficiency metrics [14]: (i) the percentage
of successful paths, ps , which is the proportion of paths that
do not get looped and reach their destinations; and (ii) the
average hop-length h̄ of the successful paths. The results are
shown in Table II, where we see that (i) both the hybrid
and link-based methods yield mappings where GR is quite
efficient, yielding high ps’s and low path lengths h̄, as is

TABLE II. Success ratio ps and average hop length h̄ of greedy paths in the mappings of Fig. 4.

Network Using real coordinates Using inferred coordinates, hybrid Using inferred coordinates, link-based

T = 0.05 ps = 0.99,h̄ = 3.0 ps = 0.96,h̄ = 3.1 ps = 0.82,h̄ = 3.3
T = 0.4 ps = 0.94,h̄ = 3.2 ps = 0.95,h̄ = 3.4 ps = 0.87,h̄ = 3.5
T = 0.7 ps = 0.77,h̄ = 3.5 ps = 0.92,h̄ = 3.8 ps = 0.89,h̄ = 3.9
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(a) T = 0.05, hybrid with correction
steps.

(b) T = 0.4, hybrid with correction
steps.

(c) T = 0.7, hybrid with correction
steps.

(d) T = 0.05, link-based with
correction steps.

(e) T = 0.4, link-based with
correction steps.

(f) T = 0.7, link-based with
correction steps.

FIG. 6. (Color online) Inferred vs real angles (in radians) for all nodes in the networks of Fig. 4. In (a)–(c) the hybrid method is used, while
in (d)–(f) the link-based method is used. In both methods, the correction steps are run as described in the text.

the case with the real node coordinates; and (ii) the hybrid
method performs better, as expected, especially at lower
T ’s.

Correction steps. We now repeat the same experiments
applying the link-based and hybrid methods with correction
steps in order to investigate the differences. Specifically,
for each method we run four correction steps as described
in Sec. III D, right after all nodes with degrees k � 60,
40, 20, and 10 appear in the network. Each of these
correction steps is repeated eight times, which equals the
average degree k̄ in each network. In the hybrid method,
the node angular coordinates that were inferred using the
common-neighbors approach are not altered by the correction
steps.

Figures 6(d)–6(f) show that the node angular coordinates
are now inferred quite accurately with the link-based method.
Figures 6(a)–6(c) show the results for the hybrid method,
which look similar to Figs. 4(a)–4(c); this means that the effect
of correction steps in this case is not as significant. All results
are in agreement with Secs. III C and III D. In all cases, the
inference is better at lower T ’s, as in Fig. 4.

The corresponding connection probabilities are shown in
Fig. 7. Compared to Fig. 5, we observe that correction steps can

help to better capture the connection probability tail, in both the
hybrid and link-based methods. Finally, the logarithmic losses
and the performance of GR are reported in Tables III and IV.
In Table III, we observe that all logarithmic losses are smaller
compared to those in Table I, and even closer to the logarithmic
losses obtained with the real coordinates. This means that
correction steps improve the quality of the obtained mappings
in all cases. The improvement is quite significant for the link-
based method, as expected, which at lower temperatures yields
even lower logarithmic losses than the hybrid method. From
Table IV, we see that the efficiency of GR is better compared to
the results in Table II, especially for the link-based method. We
also note from Tables IV and II that in some high-temperature
cases, GR with inferred node coordinates performs even better
than GR with real node coordinates. A possible explanation
for this effect is given in Sec. VIII of [5].

Fast methods. Finally, we present results with the speedup
heuristic described in Sec. IV, where we set constant C = 200
(Sec. IV). We consider the hybrid and link-based methods
with correction steps as before, and we run the speedup
heuristic for all nodes with degrees k < kspeedup = 10. We call
these versions of the methods fast versions. Figure 8 shows
likelihood landscapes sampled by the link-based method, and
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(a) T = 0.05. (b) T = 0.4. (c) T = 0.7.

FIG. 7. (Color online) Connection probabilities with inferred (radial and angular) node coordinates obtained by the hybrid and link-based
methods, and with real node coordinates. The results correspond to the mappings of Fig. 6.
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TABLE III. Logarithmic losses in the mappings of Fig. 6.

Network LLreal LLinf, hybrid LLinf, link-based LLrand rLL, hybrid rLL, link-based

T = 0.05 1.1 × 104 5.5 × 104 3.9 × 104 123 × 104 e1175000 e1191000

T = 0.4 2.4 × 104 2.9 × 104 2.8 × 104 17 × 104 e141000 e142000

T = 0.7 4.1 × 104 4.1 × 104 4.1 × 104 11 × 104 e69000 e69000

the corresponding regions of the likelihoods sampled by its
fast version. We observe that the fast version infers the same
angle as the original version, which always corresponds to the
maximum of the likelihood. We also observe that the initial
estimate of the angle is very close to the final inferred angle,
as expected. Figure 9 juxtaposes the inferred angles with the
original and fast version of the hybrid method for all the
network nodes. Similar results hold for the link-based method.
From the figure, we observe a very good match for almost all
the node angles, especially at lower temperatures. Tables V
and VI show the logarithmic losses and the performance of
GR, where the results are very similar to those in Tables III
and IV.

Summary of the results. To summarize, in this section we
have validated that (i) the common-neighbors method is more
accurate than the link-based method for nodes appearing at
early MLE times; (ii) at larger MLE times, the two methods
yield approximately the same results; (iii) the hybrid method
performs significantly better from the link-based method if
correction steps are not used; (iv) if correction steps are used,
then hybrid and link-based methods perform similarly; (v)
correction steps can help to improve the quality of the obtained
mappings in all cases, but their effect on the hybrid method is
not as significant as in the link-based method; and (vi) the fast
and original versions of the methods perform almost the same.
Our results indicate that the best options are the fast versions
of either the hybrid or link-based methods with correction
steps. However, we note that the correction steps are an ad
hoc and computationally intensive heuristic, requiring O(i3)
computations if run at time i. We have observed that these
steps are beneficial when run at relatively small times i, not
exceeding a few hundred nodes [5]. But being a heuristic,
there are no universal guidelines of when exactly they should
be invoked on a given real network to be embedded with the
best results. Since correction steps do not have a significant
effect on the hybrid approach, the fast hybrid method without
correction steps might be the best option in general in terms
of accuracy and computational complexity tradeoffs.

VI. APPLICATION TO THE INTERNET

We now consider the autonomous systems (ASs) In-
ternet topology extracted from the data collected by the
Archipelago active measurement infrastructure (ARK) de-

veloped by CAIDA [15], which is available at [16]. The
connections in the topology are not physical but logical,
representing AS relationships [16]. Specifically, an AS is a
part of the Internet infrastructure administrated by a single
company or organization. Pairs of ASs peer to exchange
traffic. These peering relationships in the AS graph are
represented as links between AS nodes. CAIDA’s IPv4 Routed
/24 AS Links Dataset [16] provides regular snapshots of AS
links derived from ongoing traceroute-based IP-level topology
measurements. A detailed description of the measurement
process is given in [16]. The AS topology has a stable
power-law degree distribution with exponent γ = 2.1, average
node (AS) degree k̄ ≈ 5, and average clustering c̄ ≈ 0.6. We
consider six snapshots of the topology spaced by three-month
intervals from September 2009 to December 2010. These
snapshots consist, respectively, of t = 24 091, 25 910, 26 307,
26 756, 28 353, and 29 333 ASs.

Logarithmic loss and greedy routing efficiency. In Fig. 10
we mapped the Sept. 2009 snapshot using the fast hybrid and
link-based methods with and without correction steps. The
correction steps were applied as described in the previous
section. In all cases, we used the estimated m = 1.5, L =
k̄−2m

2 = 1, γ = 2.1, ζ = 1, and different values of T in
[0.1,0.9]. The speedup heuristic was applied for all nodes
with degrees k < kspeedup = 3. Figures 10(a) and 10(b) show
the obtained logarithmic losses and the efficiency of greedy
routing (GR) in all cases. We observe that correction steps
do not have a significant effect on the hybrid method, whose
lowest logarithmic loss is obtained at T = 0.6. This value is
close to the value T = 0.45–0.5 required to construct synthetic
networks with the same clustering c̄ as in the Internet [5]. The
link-based method without correction steps yields significantly
higher logarithmic losses than the hybrid method, for almost all
temperature values T . These losses decrease when correction
steps are used and become similar to the ones in the hybrid
method. These results agree with our observations in the
previous section on synthetic networks, which indicated that
the link-based method without correction steps is not as
accurate at inferring the angular coordinates of nodes, while
correction steps are not as important for the hybrid method;
cf. Figs. 4 and 6 and Tables I and III.

GR is also very efficient. In the hybrid method, with or
without correction steps, the success ratios are close to 90%
for a wide range of T in [0.3,0.6]. In the link-based method

TABLE IV. Success ratio ps and average hop length h̄ of greedy paths in the mappings of Fig. 6.

Network Using real coordinates Using inferred coordinates, hybrid Using inferred coordinates, link-based

T = 0.05 ps = 0.99,h̄ = 3.0 ps = 0.97,h̄ = 3.1 ps = 0.98,h̄ = 3.1
T = 0.4 ps = 0.94,h̄ = 3.2 ps = 0.96,h̄ = 3.3 ps = 0.97,h̄ = 3.3
T = 0.7 ps = 0.77,h̄ = 3.5 ps = 0.93,h̄ = 3.7 ps = 0.93,h̄ = 3.7
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FIG. 8. (Color online) Likelihood landscapes for different nodes in a synthetic network with t = 5000 nodes and parameters m = 1.5,
L = 2.5, γ = 2.1, and T = 0.4. The plots show the log-likelihoods lnLi

L, i = 600, 1000, and 2000, with the original version of the method
that samples the likelihood over the whole [0,2π ] domain (dashed red line), and with its fast version that samples the likelihood only over the
θ region shown by the solid black line. The vertical line in each plot shows the initial estimate for the angle, θ init, while θ inferred is the final
inferred angle.

without correction steps, the success ratios are smaller, and
they become similar to the ratios of the hybrid method only
if correction steps are used. These results agree again with
our previous observations on synthetic networks; cf. Tables II
and IV.

Prediction of future links. Figure 10(c) shows the empirical
probability that a future link appears between two disconnected
ASs as a function of their hyperbolic distance in Sept. 2009.
To compute this probability, we consider all disconnected AS
pairs in Sept. 2009 and all future links that appear between
these pairs in the period Sept. 2009–Dec. 2010 (48 119 new
links). We then bin the range of hyperbolic distances between
these pairs from zero to the maximum distance into small bins.
For each bin, we find all the disconnected pairs located at the
hyperbolic distances falling within the bin. The percentage of
pairs in this set of pairs that get connected with a future link
is the value of the empirical future-link probability at the bin.
From Fig. 10(c), we observe that this probability decreases
with the hyperbolic distance between disconnected ASs, as
expected. Furthermore, this decrease is exponential at large
distances. We note that the shape of this probability is similar
to the connection probability in our model, cf. Fig. 7, but it has
a slope that does not depend on T ; in fact, different values of
T � 0.7 yield very similar results.

To provide a deeper insight into the ability of the fast
hybrid and link-based methods to predict future links, we also
compute the area under the receiver operating characteristic
curve (AUC) [17]. The AUC here is defined as the probability
that a randomly selected link from the set of our future links
is given a better score (i.e., a higher existence likelihood) than
a randomly selected nonexistent link, where the “nonexistent

links” are the disconnected AS pairs in Sept. 2009 that never
get connected in Sept. 2009–Dec. 2010. The score sij between
two disconnected ASs (i,j ) is the hyperbolic distance xij

between them. The smaller this score, i.e., the smaller the
hyperbolic distance between two disconnected ASs, the more
likely it is that these two ASs will get connected; cf. Fig. 10(c).
The degree to which the AUC exceeds 0.5 indicates how much
better the method performs than pure chance, while AUC = 1
is the best possible AUC.

The results are shown in Fig. 11(a) for different values
of T , and they are juxtaposed to the results obtained with
the preferential attachment (PA) and common-neighbors (CN)
heuristics [17]. In PA, the score between two disconnected
ASs (i,j ) is sij = ki × kj , where ki,kj are the degrees of
the ASs, while in CN sij = nij , where nij is the number of
common neighbors between the ASs. The higher these scores,
the higher the chance of a future link between the disconnected
ASs. From Fig. 11(a), we observe that the fast hybrid and
link-based methods yield very high AUC values, around 0.97
for almost all T , outperforming the PA and CN heuristics.
Note that hybrid and link-based methods perform similarly
with respect to this performance metric. This is not surprising
since, as we have seen in the previous section, the resulting
connection probabilities in the two methods are quite similar;
cf. Figs. 5 and 7. In particular, even though the link-based
method without correction steps is not as accurate at inferring
the real angular coordinates of nodes [cf. Figs. 4(d)–4(f)],
its resulting connection probabilities are close to the ones
obtained by the hybrid method; cf. Fig. 5. That is, these
results also agree with our previous observations on synthetic
networks. In Fig. 11(b), we compute the AUC by considering
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FIG. 9. (Color online) Inferred angles (in radians) with the original and fast versions of the hybrid method for synthetic networks with
t = 5000 nodes, m = 1.5, L = 2.5, γ = 2.1, and T as shown in the captions.
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TABLE V. Logarithmic losses obtained by the fast version of the
methods (with correction steps).

Network LLinf, fast hybrid LLinf, fast link-based

T = 0.05 6.2 × 104 4.0 × 104

T = 0.4 3.0 × 104 2.9 × 104

T = 0.7 4.2 × 104 4.1 × 104

only disconnected AS pairs with no common neighbors and
the future links among these pairs. In this case, CN performs as
well as pure chance since it assigns a zero score to all the pairs,
while the fast hybrid and link-based methods still perform
remarkably well, with AUC values between 0.89 and 0.92.
Finally, in Fig. 11(c), we compute the AUC by considering
only disconnected AS pairs with low degrees, less than the
average degree k̄ = 5, and the future links among these pairs.
The figure shows that the methods still perform very well, with
AUC values between 0.79 and 0.85 for T � 0.8, significantly
outperforming the PA and CN heuristics.

To summarize, our results indicate that our methods have
a very strong predictive power. Specifically, they perform
remarkably well not only in predicting the “easy-to-predict”
future links, i.e., the links that appear among nodes with high
degrees or many common neighbors, but also in predicting the
“hard-to-predict” future links, i.e., the links that appear among
nodes with low degrees or no common neighbors. In that
sense, one can say that the measure of proximity (hyperbolic
distances) between nodes in our approach reflects reality more
accurately than the PA and CN approaches do, and that our
methods can infer these distances in the real Internet quite
accurately. The predictive power of our methods is not very
sensitive to the exact value of T , with the best results obtained
for T � 0.8; cf. Fig. 11.

Evolution of soft AS communities. In Fig. 12 we map
our six AS snapshots, using the fast hybrid method with
correction steps as before, with T = 0.6, which yielded the
lowest logarithmic loss, and kspeedup = 3. In all cases, the
angle θ1 of node i = 1 (see step 3 of Fig. 1) is fixed to
θ1 = π . Figures 12(a)–12(f) show that the method produces
meaningful mappings, in the sense that the method infers soft
communities of ASs belonging to the same country, where by
soft communities we mean groups of nodes located close to
each other in the space. For each mapped snapshot, Fig. 12
shows the angular distribution of ASs belonging to the same

TABLE VI. Success ratio ps and average hop length h̄ of greedy
paths obtained by the fast version of the methods (with correction
steps).

Network Fast hybrid Fast link-based

T = 0.05 ps = 0.97,h̄ = 3.1 ps = 0.98,h̄ = 3.1
T = 0.4 ps = 0.96,h̄ = 3.3 ps = 0.97,h̄ = 3.3
T = 0.7 ps = 0.91,h̄ = 3.7 ps = 0.92,h̄ = 3.7

country for 20 different countries. For comparison among the
distributions, for each snapshot after Sept. 2009 we consider
only the ASs that were also present in Sept. 2009. The x axis in
Figs. 12(a)–12(f) (angular coordinate) uses bins of size 3.6◦.
The AS-to-country mapping is taken from the CAIDA AS
ranking project [18]. We observe that the fast hybrid method
places ASs belonging to the same country close to each other
in the angular space. The reason for this is that ASs belonging
to the same country tend to connect more densely to each
other than to the rest of the world. Connected ASs are attracted
to each other, while disconnected ASs repel, and the fast
hybrid method feels these attraction/repulsion forces, placing
groups of densely connected ASs in narrow regions, close to
each other. As expected, due to significant geographic spread
in ASs belonging to the United States, these ASs are more
widespread. We note that other reasons besides geographic
proximity may affect the connectivity between ASs, such
as economical, political, and performance-related reasons.
The mapping method does not favor any specific reason but
relies only on the connectivity between ASs in order to place
the ASs at the right angular (and consequently hyperbolic)
distances.

Figures 12(g)–12(i) also show how the angular center of
masses of the considered AS communities evolves in the
similarity space during the period Sept. 2009–Dec. 2010. We
observe that some communities, e.g., the United States and
several European countries, have a more stable position in this
space than others, e.g., Argentina and Brazil. The observed
dynamics in the similarity space is likely due to a combination
of two classes of factors: (i) stochastic fluctuations and noise
coming from the data (our mapping does not introduce any
additional randomness since the algorithm is deterministic),
and (ii) real dynamics of nodes and communities in the sim-
ilarity space, caused by new connections and disconnections
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FIG. 10. (Color online) Logarithmic loss (LLinf), GR success ratio (ps), and future-link probability in a mapped snapshot of the AS Internet
(Sept. 2009 snapshot). In (a) and (b), the results are obtained by the fast hybrid and link-based methods, with and without correction steps.
The results in (c) are obtained by the fast hybrid method with correction steps. In all cases kspeedup = 3, and the results are shown for different
values of the temperature parameter T .
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FIG. 11. (Color online) Performance of future-link prediction in the AS Internet with the fast hybrid and link-based methods (kspeedup = 3),
and comparison to the preferential attachment (PA) and common-neighbors (CN) heuristics. In each case, the AS snapshot of Sept. 2009 is
considered. In (a), the AUC is computed over all disconnected AS pairs and the new links that appear between them in Sept. 2009–Dec. 2010
(48 119 new links); in (b), the AUC is computed only over the disconnected AS pairs that have no common neighbors (95% of all disconnected
pairs) and the new links between them (9279 new links); and in (c), the AUC is computed only over the disconnected AS pairs with degrees
k,k′ < k̄ = 5 (72% of all disconnected pairs) and the new links between them (2050 new links).

within and across the communities. Similar results hold for the
link-based method with correction steps.

VII. OTHER RELATED WORK

A different mapping of the AS Internet to the hyperbolic
plane was performed in [19]. The authors found that the

hop lengths of the shortest AS paths in the Internet can be
embedded into the hyperbolic plane with low distortion, and
that the resulting embedding can be used for efficient overlay
network construction and accurate path distance estimation.
Our work is different from [19] in that hyperbolic distances
between ASs in our case are not directly defined by their
“observable” AS path lengths. Instead, they are defined by
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FIG. 12. (Color online) Distributions of angular coordinates of ASs belonging to the same country during September 2009–December 2010
(a)–(f), and the evolution of the angular center of masses of the corresponding communities over time (g)–(i). For each snapshot in (a)–(f),
the angular center of mass of each country is θc.m. = (1/n)

∑
b θ (b)n(b), where n is the number of ASs belonging to the country, n(b) is the

number of such ASs falling within bin b, θ (b) is the value of θ in the bin, and the summation is over all the bins. For each country, θc.m. is
shown (g)–(i) as a function of the network time t , i.e., as a function of the number of ASs in the snapshots (a)–(f), t = 24 091, 25 910, 26 307,
26 756, 28 353, and 29 333, respectively.
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“hidden” popularity and similarity node coordinates that
manifest themselves indirectly via the nodes’ connections and
disconnections. As indicated by the performance of greedy
routing in Sec. V, short paths follow well the underlying
hyperbolic geodesics in our mappings. However, nodes at
short path distances are not always hyperbolically closer
than nodes separated by longer paths. For the same reason,
our approach differs from multidimensional scaling (MDS)
techniques, which try to compute coordinates for points in
low-dimensional geometric spaces (see, e.g., [20]), such that
the distances between the points in these spaces match as
closely as possible some given distances between the points.

In addition to [5,6], perhaps the most relevant earlier work
is [21]. In that work, the authors considered a model of
social networks in which nodes reside in a latent Euclidean
space [22]. Nodes that are sufficiently close in this space have
higher chances of being connected. Based on this model, the
authors presented a combined MDS and maximum likelihood
estimation (MLE) procedure for inferring the node coordinates
in the latent space. The procedure can take into consideration
previously estimated node positions, e.g., estimated node
positions in a previous closely spaced network snapshot, and
penalize large displacements from these positions, in an at-
tempt to yield more accurate embeddings. The authors applied
this procedure to create embeddings for link prediction, and to
illustrate how relationships between authors in coauthorship
data change over time. The main difference between our work
and that in Ref. [21] is that in our case the latent space is not
Euclidean but hyperbolic, the latter providing a more accurate
reflection of the geometry of real networks [4,6,7]. In contrast
to earlier work on latent network geometry inference, here
we have departed from the traditional link-based inference
methods, and we based our inference entirely on a higher-order
similarity statistics—the statistics of the number of common
neighbors between nodes.

VIII. CONCLUSION

In summary, we have introduced and explored a method
for inferring node similarity coordinates based on the number
of common neighbors between nodes, and we have released
the software package implementing this network mapping
method to the public [8]. We have shown that this approach
is more accurate than the link-based approach [5], unless
heuristic periodic adjustments (or correction steps) are used.
The common-neighbors approach is more computationally
intensive, but we have devised a hybrid method that combines
the common-neighbors and link-based approaches, and we
showed how to reduce its running time to O(t2). The

correction steps can be used in this hybrid approach as
well, but their effect is not significant. Therefore, they
can be entirely avoided to reduce running time. We have
validated this method on synthetic model networks, and we
applied it to the evolving AS Internet. Taken altogether, our
results advance our understanding of how to efficiently and
accurately map real networks to their underlying hyperbolic
spaces.

An interesting open problem is whether more compu-
tationally efficient but also more sophisticated numerical
optimization methods [23] can be applied to the latent network
geometry inference problem. Such methods may expedite
the maximization of the likelihoods Li

L and Li
CN in Eqs. (5)

and (13), without sacrificing the embedding quality. We note
that our “brute-force” approach of sampling the likelihoods
at small �θ intervals in order to find their global maximum
appears currently to be the best option among all other
methods that we have investigated. These methods [23]
tend to work reliably only if the function to maximize
is relatively smooth, has only one easily detectable global
maximum, or has only a few local maxima. In contrast, the
likelihood profiles we have to deal with, Figs. 3 and 8, are
very rugged and rough, abundant with sharp local maxima,
rendering unusable all the other methods with which we have
experimented.

All the inference methods presented here and in [5,6]
use the uniform distribution as the prior [24] for the an-
gular distribution of nodes, Eq. (12). This means that the
methods do not make any prior assumption about the node
angular positions. Instead, they assume that all positions are
equiprobable, and they allow the given data, i.e., the given
network adjacency matrix, to determine the positions. The
distributions of the inferred angular coordinates can then
be nonuniform in mappings of real networks produced by
these methods, since many real networks tend to have some
nontrivial community structure. For example, Fig. 13 shows
the distribution of the inferred AS angles in September 2009.
The lowest logarithmic loss [Fig. 10(a)] is achieved at T = 0.6,
and the corresponding distribution of angular coordinates
is clearly nonuniform. In this context, an interesting open
problem is to consider extensions of network geometry models
that are capable of explaining the emergence of soft community
structure in networks and nonuniform distribution of nodes
in the similarity space (see, e.g., [25]), and to develop
mapping methods for such models that would use nonuniform
priors.

Finally, given an efficient and accurate method to map real
complex networks into their underlying hyperbolic spaces,
one of the most interesting open problems is to decipher
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FIG. 13. (Color online) Distribution of the inferred AS angles (Sept. 2009 snapshot) with the fast hybrid method (kspeedup = 3) and different
values of the temperature parameter T .
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the laws that govern the dynamics of nodes in these spaces,
Fig. 12. As real networks are characterized by a hierarchical
organization and nontrivial community structure [11,26], we
expect this dynamics to be also highly nontrivial, but definitely
not random. This observation suggests that it might be possible
to accurately predict the future positions of nodes in the
underlying hyperbolic spaces. The precise knowledge of this
spatial dynamics of nodes can then be used to predict fine-
grained network dynamics, forecasting future connections and
disconnections among nodes over different time scales.

ACKNOWLEDGMENTS

We thank M. Kitsak, M. Boguñá, and C. Psomas for useful
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