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Anonymity is one of the main virtues of the Internet, as it protects privacy and enables users to express
opinions more freely. However, anonymity hinders the assessment of the veracity of assertions that online
users make about their identity attributes, such as age or profession. We propose FaceTrust, a system that
uses online social networks to provide lightweight identity credentials while preserving a user’s anonymity.
FaceTrust employs a “game with a purpose” design to elicit the opinions of the friends of a user about the
user’s self-claimed identity attributes, and uses attack-resistant trust inference to assign veracity scores
to identity attribute assertions. FaceTrust provides credentials, which a user can use to corroborate his
assertions. We evaluate our proposal using a live Facebook deployment and simulations on a crawled social
graph. The results show that our veracity scores are strongly correlated with the ground truth, even when
dishonest users make up a large fraction of the social network and employ the Sybil attack.
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1. INTRODUCTION

Rich social interactions take place on the Web, such as blogging, shopping, chatting,
working and playing. However, unlike social interactions in the physical world, the
Web has largely hidden the identity of online users. “On the Internet, nobody knows
you are a dog,” says the famous Peter Steiner cartoon. Anonymity has brought much
benefit, such as enabling users to express opinions freely. However, it makes what and
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who to believe online challenging. Individuals that hide their real identity attributes
may defraud naive users.
Consider this real-life example. Alice is shopping for a food scale and she finds a rave

review “Worth DOUBLE the Money” [Merkin 2006] from a user claiming “I was a chef
for many years”. Should she believe this review, given that she is aware of authors or
users with vested interests in a company who have been caught creating fake positive
reviews for their own books [Harmon 2004] or the company’s products [Parsa 2009]?
Real-world remedies to this problem typically forgo a user’s anonymity. For instance,
Amazon provides a “Real Name” badge to a user that wishes to sign his posts by his
real name. Amazon verifies a user’s name using his credit card information. Moreover,
verifying a user’s identity by examining official certificates or meeting in-person can
be costly and time consuming.
This situation prompts the question: can a user cost-effectively establish online iden-

tity assertion veracity without sacrificing his anonymity? One approach is to use per-
sonal digital certificates issued by a trusted Certificate Authority (e.g., VeriSign), and
to apply techniques such as idemix [Camenisch and Herreweghen 2002] to make the
certificates anonymous, unlinkable, and non-transferable. However, this approach in-
volves centralized manual verification. Thus it could be a financial and a usability
burden on users [Whitten and Tygar 1999].
In this paper, we propose FaceTrust, which is a system that enables online personas

to cheaply obtain credentials that indicate the veracity of their identity statements
without sacrificing their anonymity. The insight of FaceTrust is that online users or
services do not require strong authentication in many settings, and can benefit greatly
from likely-to-be-true identity information. For example, a user who contemplates pur-
chasing a book may benefit by knowing that a reviewer’s declared profession is more
likely to be true than another reviewer’s. Similarly, it may suffice for an adult site to
know that a user’s age information is likely to be true. In the adult site setting in par-
ticular, the currently deployed solution relies solely on web sites asking the user to
state, under the penalty of perjury whether he is of the proper age. This solution does
nothing but transfer all the responsibility for a potential violation to the lying user. The
web sites themselves are not required to pose any additional obstacles to the users. Our
solution offers regulators the option to require online services to raise the bar for viola-
tors, while preserving user anonymity. Our veracity scores are manipulation-resistant
trust values that can assist verifiers to make more informed decisions on whether to
accept an identity claim.
FaceTrust mines and enriches information embedded in online social networks

(OSNs) to provide lightweight and flexible digital credentials of the identity assertions.
Leveraging the fact that OSNs already allow users to express a limited form of trust
relationships by using friend links, FaceTrust extends this property by allowing users
to declare whether they consider the identity assertions of their friends credible (§3.1).
In particular, a user who wishes to obtain a credential posts short assertions about
himself on his OSN profile in the form of a poll, e.g., “Am I really over 18?” Because
the identity information on the OSN profile is inserted by the user, the OSN provider
cannot directly infer its veracity. Thus, the OSN enables the user to ask his friends
to provide a new type of social feedback, i.e., to respond to this poll by tagging the
user’s asserion as true or false. Based on the tagging information, the OSN employs
a veracity scoring mechanism (§3.3.2) to estimate a score that reflects how credible an
assertion is. We call this score assertion veracity (§3.2).
The assertion veracity scoring mechanism also employs transitive trust infer-

ence [Guha et al. 2004], which needs to be attack-resistant because users may post
false assertions, tag incorrectly or lie, and create Sybil accounts [Douceur 2002]. The
intuition behind the proposed trust inference scheme is that benign (honest) users tend
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to tag correctly and similarly. A user’s tags are compared with those from his friends
on the set of assertions they both tag, and the similarity between the tags is considered
as pairwise trust values on the social graph edges. Based on the similarity-annotated
social graph, a Sybil-resistant tagger trustworthiness score for each user is computed.
For this purpose, a new max-flow-based scoring mechanism is proposed, which is more
scalable than existing approaches. The proposed scoring mechanism seeds trust at pre-
selected known honest users and propagates it along the similarity-annotated edges,
resulting in dishonest users that tag falsely to have substantially lower trust than
honest users. Finally, an assertion’s veracity is derived by combining its tags weighted
by their tagger’s trustworthiness.
After deriving an assertion’s veracity, the OSN issues a credential in the form of
{assertion, veracity, content, context} (§3.4). Verifiers (online services or human
users) can use this OSN-issued credential to regulate their interactions with the user
that posted the assertion. Users and applications can combine the assertion verac-
ity value with other contextual information to make more informed decisions during
online interactions. For example, in order for a user to decide whether a Computer
Science book on Amazon is worth buying, he may consider both the fact that a pos-
itive review is written by a persona certified by FaceTrust to be a CS professor, and
the fact that the review is well-articulated. For usability, our context-specific creden-
tial scheme allows a user to certify his online assertions with a simple web interface
without involving user-side cryptography.
To evaluate FaceTrust, we have built and deployed a FaceTrust application, which

has amassed over 1000 users. We have also evaluated FaceTrust through a series of
extensive simulations on a 200K-user sample of a crawled social graph (§6). The results
of our evaluation show that FaceTrust assigns high veracity to true assertions and
low veracity to false ones, even when a large fraction of the network is dishonest and
employs the Sybil attack.
The rest of the paper is organized as follows: §2 describes the overview of Face-

Trust with an example and discusses FaceTrust’s assumptions and goals. §3 provides
the design of FaceTrust in detail and the analysis of attack resistance of FaceTrust
is discussed in §4. §5 describes the implementation of FaceTrust and §6 presents an
evaluation of FaceTrust. §7 discusses related work and §8 concludes.

2. OVERVIEW

FaceTrust involves the following three roles (Figure 1): a) the OSN provider that main-
tains the social network and its users’ profiles, and performs trust computations; b)
online users that maintain accounts with the OSN and wish to present OSN-issued
credentials; and c) credential verifying online services or users.

2.1. An Example

Figure 1 illustrates an age-verification example to shed light on how FaceTrust roles
interact. User u attempts to access an age-restricted movie at the Netflix website. At
the same time, u does not wish to reveal his real identity to Netflix. With FaceTrust,
Netflix can demand an OSN-issued age credential from the user to allow access to its
content.
To obtain this credential, the user u must have posted an age assertion on his OSN

profile, and requested his friends to tag the veracity of his age assertion before he at-
tempts to access the age-restricted content. In this example, user u has asserted that
his age is 21, and three of his friends, users x, y, and z, have tagged the assertion with
boolean values true, true, and false respectively. Because not all users are equally
trustworthy, the OSN provider has computed a trustworthiness score (w) for each tag-
ger x, y, and z by analyzing the social graph and their tagging history as described
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Fig. 1. FaceTrust overview and an age verification example.

in §3.3. The OSN provider computes an overall veracity score for user u’s age asser-
tion (0.8 in this example) by aggregating u’s friends’ tagged values weighted by their
trustworthiness scores (§3.2).
Subsequently, the OSN issues an age credential with a veracity score that certifies

that the user belongs to the restricted age group. The user presents this credential to
Netflix to access its content (e.g., by submitting the credential URL, or the credential
ID). For ease of use, instead of using cryptographic digital certificates, FaceTrust im-
plements web-based identity credentials using an XML API for online services such as
Netflix, or through a simple web page for human users (§3.4).

2.2. More Motivating Examples

In addition to age verification, FaceTrust credentials will benefit Internet users and
online services in many other ways.
Assessing the authority or relevance of online reviews or ratings with profes-
sion credentials: Many Internet users read online reviews before making purchase
decisions. Intuitively, expert opinions of an online product may appear more authori-
tative to many readers. For instance, a reader may place more weight on a review for
a networking textbook by a computer science professor than by an average user. With
FaceTrust, if an expert user desires to appear more authoritative, he may request a
profession credential from his OSN provider and include it with his review.
Note that the goal of FaceTrust is not to explicitly assess the correctness of the re-

view. Instead, FaceTrust only aims at verifying the identity attribute (e.g., profession)
of the user that posted the review. This is because FaceTrust is suitable for assessing
the veracity of ground truth statements (ones that are universally accepted as true or
false) and not for assessing statements that are subject to personal taste or opinion.
Verifying participant eligibility: A citizen journalism site may wish to verify that
a user actually resides in a specified area before it accepts his report on an event that
took place there. Similarly, Wikipedia, online auction sites, online statistical surveys
and online dating sites [Norcie et al. 2013] may wish to restrict participants to cer-
tain groups of people, such as people with particular expertise, residents in a certain
geographic area, or people of a certain age range. FaceTrust can assist legitimate par-
ticipants to obtain credentials that certify their eligibility.
Preventing online fraud: Scammers commonly respond to online postings alleging
to be prospective participants in legitimate transactions (e.g., a potential tenant of
an apartment), and aiming to commit “advance-fee” fraud [Rental-Scam 2013]. Such
attacks could possibly be averted if online users had a way to infer when scammers
lie about their location, affiliation, or age. To this end, a classifieds service such as
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Craigslist or its users could use FaceTrust to verify identity attributes of users that
post or respond to ads.

2.3. Assumptions

In designing FaceTrust, we make the following assumptions.
Users carefully vet FaceTrust friend requests: This assumption is based on the
fact that establishing friend connections in the FaceTrust social network is a resource-
intensive task. We assume that Sybils establish a limited number of attack edges due
to the difficulty of soliciting and maintaining reciprocal social relationships [Yu et al.
2006; Cao et al. 2012]. Although previous studies [Bilge et al. 2009; Boshmaf et al.
2011] suggest that fake identities can befriend others, a recent study shows that most
of their connections are established with other fakes [Motoyama et al. 2011]. Users can
use common-secret-based techniques to verify that a OSN friend request originates
from a real acquaintance and not an imposter [Baden et al. 2009]. This assumption
also implies that a user selects as OSN friends users that will not try to harm him
by tagging his honest assertions as false. Therefore, the FaceTrust social network
is a more carefully vetted subgraph of the OSN graph. Examples of real-world social
graphs that consist of mostly carefully vetted edges are the Google+ and Facebook
subgraphs that contain only the edges between users that appear in mutually close
circles and friend lists, respectively.
OSN provider as a trusted credential issuing authority: We assume that the
OSN provider reliably issues credentials based on the input of its users. Also, the
OSN provider does not reveal a user’s tags to others, otherwise it would lose the trust
of its users. Furthermore, users may wish to remain anonymous and untraceable by
the verifiers. We make the explicit assumption that the OSN (or FaceTrust) provider
is bound by end-user agreements to protect the privacy of its users by not revealing
their identity and the list of online services or users that verify its users’ credentials.
We assume that unless the user himself includes personally identifiable information
in his credentials, this information will not leak to the verifing users who view the
credential. For example, in the case of the Amazon review, the readers of the review
would know that the user is a CS professor but they would not know what his exact
rank is and in which university he works. In the case of an age-restricted site, the site
would learn only that the user is likely to be over 18 and it would not have access to
any other item of the user’s profile.
We note that it is common for users to rely on trusted service providers for criti-

cal issues regarding their security, e.g., using certificate authorities for the issuance
of certified key pairs or entrusting private information to webmail services. Trust in
centralized and specialized online security service providers is a common occurrence
and is part of several viable business models.
Trustworthy users tag mostly correctly, as well as post true identity asser-
tions:When trustworthy users (honest) tag a same identity assertion their tags mostly
match, because an assertion in FaceTrust is about ground truth (e.g. age, profession,
sex and etc.) rather than personal taste. This assumption is validated to some extent
in §6.2. The users that consistently tag mistakenly not due to malicious intent, but due
to lack of knowledge, are treated as dishonest (§2.4).
Transitivity of Trust:We assume the transitivity of trust in the online social network
setting. Transitivity is a highly desired property that leads to higher accuracy for trust
metrics, especially in a system where global trust information is lacking [Richters and
Peixoto 2011]. In particular, Google’s PageRank [Page et al. 1999] and its web-spam-
resilient variants, such as TrustRank [Gyöngyi et al. 2004], rely on the transitivity of
the trust that is expressed as directional hyperlinks between web pages. In addition,
Highly Predictive Blacklisting leverages the transitivity of trust between email spam
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detectors, which in that particular case manifests itself as similarity between attack
reports [Zhang et al. 2008]. Furthermore, SybilRank [Cao et al. 2012] is a recent sys-
tem that relies on trust transitivity and is successfully deployed to uncover Sybils in a
real OSN. In that case, trust is expressed as social links between honest accounts. Also,
the transitivity of trust is widely used in the X.509 public key infrastructure scheme’s
chain of trust [Perlman 1999; Wikipedia 2013].
Trust may not be sufficiently transitive in some contexts. For example, the study in

[Ramasubramanian and Sirer 2005] uncovers several security vulnerabilities of the
domain name system that stem from the system’s reliance on trust transitivity. In ad-
dition, an authorized digital certificate for the “*.google.com” domain was issued due to
a compromised chain of trust [Langley 2013]. We do not claim to have a solution that
accurately measures the trust between users, but a system that leverages trust tran-
sitivity to the degree it actually manifests itself. In this paper, FaceTrust transforms
the social network graph into a trust graph by annotating edges with a value that is
derived from a combination of the similarity of tags between users and a trust value
that users explicitly assign to each other (§3.3). This design combines the transitivity
of trust along social edges [Cao et al. 2012] with the transitivity of the similarity of
feedback [Zhang et al. 2008].

2.4. Threat Model

FaceTrust’s design copes with the following types of malicious users that aim to sub-
vert the system:
Dishonest assertion posters and taggers: We consider dishonest users that are
primarily interested in posting dishonest assertions to misrepresent their identities.
These dishonest users can collude with other dishonest users that tag their false as-
sertions as true.
Sybil Taggers: Dishonest users can launch the Sybil attack [Douceur 2002] by creat-
ing many fake accounts under their control. A dishonest user that creates Sybils can
employ them to tag the false assertions of the creator’s colluders as true. Sybils may
also infiltrate social network graphs [Yang et al. 2011; Irani et al. 2011] by befriend-
ing honest users or by being connected to dishonest users that are well-connected to
honest ones.
Sybil Assertion Posters: Dishonest users can create Sybils who are connected to
them and post false assertions. These assertions are tagged by their creators and their
colluders as true. This attack creates Sybil users that are not friends with honest
users, thus their assertions are never tagged false by them. Consequently, it is easier
for those Sybils to make their assertions have a relatively high veracity score.
Camouflage attack: This threat resembles what Kamvar et al. [Kamvar et al. 2003]
refer to as “malicious nodes with camouflage.” Malicious nodes may initially behave
honestly to accumulate trust for themselves or their friends, and they later attempt
to defeat the system. One manifestation of this attack is the tagger camouflage at-
tack. Dishonest users attempt to build up trust with honest users by always tagging
similarly to the veracity that is currently displayed for the assertion. After they earn
enough tagger trustworthiness, they tag dishonestly only for specific questions. The
tagger camouflage attack also implies that the case in which a user is not always tag-
ging falsely, but instead has a mixed strategic behavior. Another manifestation of the
camouflage attack is the assertion poster camouflage attack. A dishonest user posts
several honest assertions. Both his honest and dishonest friends tag those assertions
as true. As a result, if his dishonest and honest friends are also friends with each
other, his dishonest friends build up trust with his honest friends. Consequently the
dishonest friends’ tagger trustworthiness increases.
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Rational dishonest users:We assume that dishonest users, who post false assertions
and tag dishonestly are rational. Dishonest users benefit by obtaining a credential that
makes a false assertion appear true. At the same time, they incur a cost every time
they create a Sybil account, i.e., the time needed to solve CAPTCHAs at registration
time. They also incur a cost every time they coordinate with other dishonest users on
which assertions to tag as true.

2.5. Goals

FaceTrust’s design is driven by the following goals:
Attack-resistant:Our system aims at making it difficult for false assertions to appear
trustworthy by having high veracity. The system should be resilient to errors made by
benign users and to manipulation by dishonest users. Although our design is attack-
mitigating, it cannot ensure the correctness of the veracity scores in the presence of
devoted adversaries. Therefore, our system is not meant for guarding critical resources
and the veracity scoring is relaxed to be within the range [0, 1] rather than a binary
true or false value. FaceTrust credentials alone cannot guarantee the truthfulness of
a statement. For this reason we refer to our credentials as relaxed.
Informative: FaceTrust should offer users additional information on the veracity of
identity assertions. Because it is relatively easy for a user who posts a truthful asser-
tion to find friends who vouch for him, if an assertion has low veracity, users should
reject it from the outset. If the assertion has high veracity, users should still employ
other common sense verification mechanisms or be aware that they are taking a risk
by accepting the statement as true. The veracity of user assertions should correlate
positively with the ground truth. When an assertion has higher veracity than another,
this should indicate that it is more likely to be credible. Verifiers can define their own
thresholds (possibly suggested by FaceTrust’s admins) to map a veracity score to an
action based on the application scenarios and their own risk tolerance. To ease the
interpretation of the veracity score, it is desirable that the veracity of true and false
assertions is greater or lower than 0.5, respectively. Users can use this measure by
setting thresholds that we can suggest. For example through experimentation in syn-
thetic traces, honest assertions almost always get higher than 50% veracity, while dis-
honest ones get less than 30%.
Lightweight: We aim to provide credible identity information for online personas
without centralized manual identity verification.
Flexible: Users should be able to obtain credentials on a variety of attributes, e.g.,
age, profession etc. Users should also be able to conveniently obtain new credentials
when their attributes change.
Practical: The system should be easy to use. It should not require users to deal with
cryptographic primitives, and shared secrets. It should require minimal upgrades of
client software.
Secure: The credentials should satisfy authentication, i.e., the verifier should be as-
sured that a credential is issued by a trusted authority. They should satisfy integrity,
i.e., the assertion and context fields should be inalterable once the credential is issued,
and the veracity field reflects the correctly computed assertion veracity score (§3.2).
This guarantees that a user cannot forge the veracity score of his assertions and that
a user cannot use somebody else’s assertions to verify his identity attributes. More-
over, the credentials should preserve anonymity, i.e., a user should be able to present
credentials with no personally identifiable information.

3. DESIGN

In this section the detailed design of FaceTrust is presented. Table I lists the key
notations used in the paper.
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Table I. Key notations.

Name Meaning

At
i Assertion of type t posted by user j

wt
j Tagger trustworthiness of user j for type t

dAji Tag by friend j of user i on i’s assertion A

aA Veracity of assertion A

tstij Tagging similarity between users i and j for as-
sertions of type t

Nt Number of tags on common assertions of type t
between users i and j

Ct Number of equal tags on common assertions of
type t between users i and j

hsij History-defined similarity between users i and j
for assertions of type t

ustij User-defined similarity between users i and j for
assertions of type t

a(Nt) logistic function of Nt used in combining user-
defined similarity with tagging similarity

G(V, Et) Similarity-based trust graph for type t

S Set of trusted sources (seeds)
Csupersource Capacity at the supersource

pd Portion of the social graph that is dishonest

3.1. Social Tagging

FaceTrust elicits from its users a new type of feedback, which it uses to assess the
credibility of identity information. We refer to this feedback as “social tagging”. It in-
volves OSN users posting assertions about the attributes of their identities and their
friends tagging them as true or false. Our approach is similar to the PGP Web of
Trust [Zimmerman 1995], in that we allow only friends of a user to tag (certify) the
user’s assertion. Our rationale is two-fold. First, most of the assertions posted by a
user can only be reliably evaluated by people who know him (friends). Second, because
a user has carefully vetted his friends, those friends are likely not to attempt to harm
him by tagging his true identity assertions as false.
FaceTrust categorizes identity attribute assertions into various types such as age,

address, profession, expertise etc. For instance, for the type age, an assertion has
the format [{<,=,>}, number], e.g., [> 18] means that the user claims to be older
than 18. For the type location, the assertion has the format [{country, state, city
...}, string], e.g., [country, US]. We use distinct types because a user’s tendency to
correctly tag assertions may vary by type (§3.2), and to address the camouflage attack
(§3.3.1).
For an assertion At

i of type t posted by a user i, i’s friend j may tag it as dAji. d
A
ji

takes two values: true indicates that j believes i’s assertion, and false that it does
not. A posted assertion and its associated tags are valid for a period of time set by
the OSN provider depending on the assertion type. An assertion is uniquely identi-
fied by its {type, assertion} pair. A user cannot repost the same assertion and reset
unfavorable tags before the assertion expires. Because the tags represent sensitive in-
formation, they are only known to the OSN provider and their tagger. In addition, the
OSN provider does not reveal to the assertion poster the veracity of an assertion unless
the assertion has accumulated a threshold number of tags to protect taggers’ privacy.
This design assumes that users are willing to tag their friends. This is a reasonable

assumption because abundant evidence suggests that users may adopt social tagging.
For example, “Friend Facts” is a popular application that presents a user with ques-
tions about his friends and asks him to vote to let them know what he thinks about
them. It has amassed ∼ 4.5 million monthly active users. We further validate this
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Fig. 2. Illustration of social tagging using the “Am I Really?” Facebook application.

assumption in §6.2 using data from our real-world deployment of the “Am I Really?”
Facebook application: http://apps.facebook.com/am-i-really (§5). By using AIR, Users
posts assertions on their OSN profile and tag their friends’ assertions. AIR employs a
“game with a purpose” design to incentivize social tagging. A snapshot of social tagging
using our Facebook application can be seen in Figure 2.

3.2. Assertion Veracity

A main challenge in FaceTrust’s design is to assess the veracity of user assertions.
This task is difficult because dishonest users may post false assertions and strategize
to assign them high veracity, and benign users may make mistakes. To make this
task tractable, we resort to providing a relaxed credential that binds an assertion to a
veracity score between 0 and 1.

Definition 3.1. The assertion veracity of an assertion At
i is a score 0 ≤ aA ≤ 1 re-

flecting the truthfulness of an identity assertion A. It strongly and positively correlates
with the truth, i.e., an assertion with higher veracity than another is more likely to be
true.

As shown in Figure 3, the inputs for computing an assertion’s veracity are the tags
on an assertion and the taggers’ trustworthiness. A tagger j’s trustworthiness wt

j is
a measure that estimates the trustworthiness of j’s tags on assertions of type t. We
compute this measure using the trust inference technique described in §3.3.2. We then
weigh the tags of an assertion with their taggers’ trustworthiness to score the asser-
tion’s veracity. Let Fi denote the set of friends of user i that have tagged the assertion
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Fig. 3. Combining social tagging with trust inference to derive the veracity of user assertions.

At
i. To compute the veracity score aA of At

i , the OSN provider aggregates the tags dAji
by i’s friends as follows:

aA = max(
∑

j∈Fi

wt
j · d

A
ji/

∑

j∈Fi

wt
j , 0) (1)

We make the scoring of the veracity of an assertion conservative by assigning -1
to false tags, 1 to true tags, and normalizing negative veracity scores to zero. For
instance, if an assertion has two tags true and false from two equally trustworthy
taggers, its assertion veracity will be 0, not 0.5. Equation 1 ensures that the sum of
the weights wt

j of true tags should be more than 0.75 of the sum of the weights of all
users in Fi for aA to be more than 0.5 veracity. Thus, this design is biased towards mak-
ing it difficult for users to make false assertions have a high veracity score. However,
malicious users may abuse this design to make true assertions of a user non-credible.
We are tackling this attack by allowing only a user’s friends to tag his assertions.
We use the additional condition that if the sum of the trustworthiness of the taggers

of the assertion At
i is below a specified threshold M , aA is 0. M can be proportional to

the mean tagger trustworthiness of users. We use this condition to discount assertions
that have been tagged only by a few users with low tagger trustworthiness.

aA = 0 if
∑

j∈Fi
wt

j < M (2)

We analyze the assurances provided by the assertion veracity mechanism in §4.1.

3.3. Tagger Trustworthiness

Definition 3.2. The tagger trustworthiness of a user j is the integer score 0 ≤ wt
j ≤

Tmax that indicates whether a tagger j is honest or correct in his assessments of the
veracity of assertions of a specific type. This score strongly and positively correlates
with the ground truth, i.e., a tag by a user with higher trustworthiness is more likely
to correspond to the reality.

How can FaceTrust reliably determine a tagger’s trustworthiness wt
j? To address

this problem we resort to a Sybil-resistant trust inference technique. A trust inference
algorithm refers to the process of computing the trustworthiness of a node in a graph
by exploiting the transitivity of trust. The algorithm assumes that a few selected nodes
in the graph are fully trustworthy (trust seeds). It then analyzes the trust graph to
determine how trust propagates to other nodes.
We face two challenges in determining the tagger trustworthiness wt. First, trust

inference uses a trust graph, where an edge between two users i and j is explicitly
labeled with the degree of trust that i places on j. However, this explicit trust infor-
mation is not available in a social network graph. Second, how should we compute the
tagger trustworthiness wt, given that different trust inference algorithms exist and
each has its own strengths? We describe how we address each challenge in turn in
§3.3.1 and §3.3.2.
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3.3.1. Tagging Similarity. We address the first challenge by using tagging similarity be-
tween two friends to approximate explicit trust. Recall that our assumption is that
honest users tend to tag correctly and similarly, and note that tagging similarity is
transitive. The tagging similarity tstij between two friends i and j for an assertion type

t is computed from two sources: a history-defined similarity hstij and a user-defined

similarity ustij .
We compute the history-defined similarity between two friends using a formula that

resembles the Jaccard index [Jaccard 1901]. Let Nt be the total number of assertions
of type t that friends i and j both have tagged. Let Ct be the number of tags on the set
of common assertions for which i and j are in agreement. The history similarity hstij
between i and j for type t is computed as hstij = Ct/Nt. IfNt = 0, the similarity is equal
to 0.
We incorporate user-defined similarity for the case when the number of tags is insuf-

ficient to calculate a meaningful history-defined similarity. The user-defined similarity
ustij reflects whether a user i trusts that the friend j will honestly tag assertions of a
type t. To acquire the user-defined similarity, we use special assertions for each type
t - “Do I honestly tag the <type> assertions of my friends?”. Each user j posts these
assertions on his OSN profile. If j’s friend i tags it as true, ustij equals 1; otherwise, it
is 0.
We combine user-defined similarity with history-defined similarity to obtain the final

tagging similarity between two friends in the OSN social graph: tstij ← a · hstij + (1 −

a)ustij , where 0 ≤ a ≤ 1. We vary the parameter a depending on how many common
assertions Nt of the same type t users i and j have tagged; the larger Nt is, the higher
a should be. When Nt is large, we presume that hstij approximates the likelihood that
two friends would tag an assertion with the same value in the future more accurately
than a manually specified value ustij . However, when Nt is small, we use the user-

defined value ustij to approximate this likelihood. The parameter a is computed using

the logistic function: a = (1 + eb−Nt)−1. b is a small constant, and we set b = 5 in
this paper. The logistic function is S-shaped. For example, if we set b = 5, for Nt ≤ 2,
a(Nt) would be less than 0.05. However, when Nt exceeds the threshold 3, a increases
drastically until it becomes 0.5 for Nt = 5. For Nt = 10, a(Nt) approximates 1.0.
We then transform the social graph into a trust graph by assigning the tagging

similarity tstij to be the weight of a trust graph edge from a friend i to a friend j. We
refer to this augmented graph as the similarity-based trust graph G(V,Et). Note that
this is a directed graph, as the user-defined similarity usij is directional.
We have a distinct similarity-based trust graph for each type of assertion to mi-tigate

camouflage attacks (§2.4). Due to this design an attacker is forced to tag honestly many
assertions of the same type in order to boost its tagger trustworthiness. As a result, he
is less flexible in his choice of which assertions to tag and how.
We compute tagging similarity only between friends to constrain the edges in the

trust graph to be the same as the ones in the social graph. This design choice is critical
in making our assertion veracity scoring algorithm attack-resilient, because establish-
ing social edges is a resource-intensive task [Yu et al. 2008] (§2.3). FaceTrust’s Sybil
defense relies on the fact that malicious users can establish a limited number of trust
relationships with real humans (§2.3) [Levien 2003; Yu et al. 2008]. However, it raises
the concern that if two friends do not share common friends, they may not have enough
common assertions to tag. Fortunately, OSNmeasurement studies [Mislove et al. 2007;
Ahn et al. 2007] show that the clustering coefficient in social graphs is one to five orders
of magnitude higher than in Erdös-Rényi random graphs and preferential-attachment-
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constructed random power-law graphs. This result implies that two friends of a single
user are more likely to be friends as well.

3.3.2. MaxTrust : Max-flow-based Trust Inference. Once we have converted a social graph
into a trust graph, the challenge lies in computing a tagger’s trustworthiness. To this
end, we consider the max-flow-based broad class of trust inference algorithms [Levien
2003; Levien and Aiken 1997; Reiter and Stubblebine 1999; Cheng and Friedman
2005; Tran et al. 2009]. It has been shown that max-flow-based trust inference is
more resilient to attackers because it considers multiple trust paths [Levien and Aiken
1997; Reiter and Stubblebine 1997; Cheng and Friedman 2005]. This is in contrast to
trust metrics considered in other systems (e.g., the maximum trust path used in Cre-
dence [Walsh and Sirer 2006]). It has also been shown that a group max-flow-based
trust metric [Levien 2003] is sum-Sybilproof, i.e., an attacker cannot substantially in-
crease the sum of the trust values of users under his control by introducing many
Sybils.
The common element among trust inference methods is that trust flows from a few

select trust seed users (trust seeds) and propagates to the other users in the trust
graph. A seed is a highly trusted user, e.g., a trusted employee of the OSN provider
that also verifies and tags assertions of many of his acquaintances. The specifics of
the trust inference method determine how trust propagates in the graph. Our trust
inference scheme should assign high trust to users that are well-connected with the
trust seeds and vote similarly to them. It should also assign lower trust to dishonest
users that happen to be well-connected but vote dissimilarly to the trust seeds. Finally,
it should assign low trust to Sybil users that are often connected only to their dishonest
creator users.
What renders a trust inference method Sybil-resilient is the bottleneck prop-

erty [Levien 2003], which we define as follows: “the trust that flows to the region of
the graph that consists of dishonest users and their Sybils is limited by the edges con-
necting the dishonest region with the region that consists of trust seeds and honest
users.”
In addition, the selection of the trust seeds and the number of trust seeds is

paramount to the attack resilience of the system. This is because an attacker that
manages to befriend trust seeds and to build up high tagging similarity with them can
greatly manipulate trust assignment. When the trust inference method employs nu-
merous trust seeds, a dishonest user would need to identify and target many of them
in order to be effective. Note that the complete trust graph itself is not made public,
therefore locating a trust seed can be a difficult task for attackers.
Nevertheless, it is possible for dishonest users to infer a portion of the topology and

identify a trust seed. Hence, one desirable feature of trust inference methods is to be
efficiently computable for numerous trust seeds. To this end, the method’s computation
cost should be mostly independent of the number of trust seeds. One of our contribu-
tions is a max-flow-based trust inference method, called MaxTrust, for computing the
tagger trustworthiness wt

j with this desirable feature. We analyze the assurances pro-
vided by this mechanism in §4.2.
We also note that determining which users in a social graph can be designated as

trust seeds is a challenge. Gyongyi et al. [Gyöngyi et al. 2004] addressed this chal-
lenge in the context of TrustRank, an eigenvector-based trust inference method for
web pages. TrustRank uses a PageRank-based algorithm to select seeds, and the set of
selected seeds are verified by human experts prior to being used by the TrustRank al-
gorithm. We apply the same solution to select MaxTrust seeds. More recently, Wu et al.
proposed improvements over the seed selection algorithm [Wu et al. 2006] introducing
the topical TrustRank.
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Advogato and MaxTrust. Our method is inspired by the Advogato [Levien 2003]
trust metric. Both Advogato and MaxTrust satisfy the bottleneck property. In particu-
lar, assuming that Sybils are only connected to their dishonest user creator, they en-
sure that the sum of the tagger trustworthiness of the creator and its Sybils does not
exceed the sum of the capacity of the creator’s incoming edges in the similarity-based
flow graph.
Advogato determines the set of users that can be trusted by at least a certain level

w on a trust graph, where a directed edge u → v indicates that user u trusts v by at
least w. Advogato transforms the trust inference problem into a problem of maximum
flow from a single trust seed user to a virtual supersink user. The capacity of the users
in the flow graph is distributed such that the sum of the capacity of users at the same
shortest hop distance from the trust seed is approximately equal to the capacity of the
seed.
It splits each user into two virtual users (+ and -) and draws an additional edge of

capacity 1 from the + virtual user to the supersink. The capacity of the edge connecting
the + to the - virtual trust seed user is approximately the number of users in the trust
graph that are expected to be trusted by at least x. The sum of the capacity of the +→-
edges at each shortest hop distance from the trust seed is approximately equal to the
capacity of the trust seed +→- edge. A user is considered trusted by at least w if the
maximum flow solution has flow 1 on his +→supersink edge.
Because Advogato chooses a single trust seed as the source of its max-flow compu-

tation, a dishonest user that is close to the seed can have high capacity. As a result,
it can have many of its Sybils accepted at the same trust level as him. To mitigate
this problem, one has to use multiple trust seeds from a set S ⊂ V , run the Advogato
max-flow computation |S| times, and average the resulting trust value across the runs.
Compared to Advogato, MaxTrust’s main advantage is that it does not need to be run
for each trust seed. Instead in a single run (max-flow computation), it considers all
the trust seed users. This results in MaxTrust being Θ(|S|) times more efficient than
Advogato.
To assign tagger trustworthiness to a user using Advogato we need to run amax-flow

computation for each non-zero trust level w, pruning at each run the edges that cor-
respond to pairwise trust less than w. MaxTrust computes the tagger trustworthiness
0 ≤ wt

i ≤ Tmax in one run, but the optimal (non-heuristic) max-flow computation is
approximately Tmax times more expensive than the max-flow computation of Advogato
for a single trust level.
Another advantage of MaxTrust is that it considers the similarity between users,

which can be viewed as pairwise trust that regulates the flow of total trust that the
network assigns to a user. As a result, MaxTrust is able to incorporate additional in-
formation about the confidence each user can place on each other’s tags, resulting in
more accurate trustworthiness estimations.
MaxTrust computes the tagger trustworthiness 0 ≤ wt

i ≤ Tmax using a heuristic
max-flow computation the cost of which increases linearly with Tmax. In choosing Tmax

one has to consider the trade-off between computation cost and fine-granularity in as-
signing trust values to users. MaxTrust proceeds in two phases: a) the phase in which
we transform the trust graph into a network flow problem; and b) a heuristic suitable
for approximating max flow in case every user in the graph is directly connected to the
sink.

Phase 1: Network Flow Graph Creation. In this phase, we transform the trust
graph into an edge-capacitated network flow graph. We create an additional virtual
supersource user (Figure 4). We then add an edge from the supersource to each trusted
user s ∈ S. We add a directed edge from each user, except of the supersource, to an
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Fig. 4. The tagging similarity-based trust graph and its conversion into a MaxTrust network
flow graph. The capacity Csupersource in this example is 8 · Tmax. MaxTrust results in all users
except U7 having tagger trustworthiness equal to Tmax.

additional virtual supersink user. To prevent loops during the distribution of capacity
among the users, we prune all edges that connect users at a higher distance from the
supersource to users at a lower distance from the supersource. We also prune edges
between users at the same distance from the supersource.
We now describe how we distribute capacity to the edges of the network flow graph.

We denote as Csupersource the sum of the capacity of the outgoing edges of the super-
source. We set Csupersource = (1 − pd)|V | · Tmax, where pd is the portion of users in
the trust graph G(V,Et) that are dishonest. We make the implicit assumption that we
know the approximate number of honest users at the time we initialize the trust in-
ference method. Next, we assign capacity Cs = Csupersource/|S| to each edge from the
supersource to each trusted user s. In the rest of this description, we denote as Cu the
sum of the capacity of the incoming edges of user u.
Subsequently, we recursively assign capacities to the rest of the edges in the trust

graph. That is, for each user u, we distribute Cu − Tmax capacity among the outgoing
edges that connect u with its neighbors in the pruned graph. The capacity Cuv of the
outgoing edge from user u to its neighbor v in the pruned graph is assigned proportion-

ally to the tagging similarity tsuv between user u and v: Cuv = (Cu−Tmax)
tsuv

∑

z∈Fu
tsuz

,

where Fu is the set of u’s friends. We also assign capacity Tmax to the edge u →
supersink. If Cu < Tmax, we set Cu = Tmax, and allocate no more capacity to u’s
neighbors. With this choice, we bias tagger trustworthiness towards higher scores for
a smaller number of users, instead of lower scores for a larger number of users. This
further limits the effectiveness of Sybil assertion poster attacks (§2.4).
If we overestimate the portion of dishonest users (pd), then more honest users will

be assigned low tagger trustworthiness resulting in the veracity of true assertions to
decrease. If we underestimate it, then dishonest users will gain higher trustworthiness
and they will be more potent in assigning higher veracity to fake assertions.
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Phase 2: Max-flow Computation. We now describe how we compute the maxi-
mum flow from the supersource to the supersink and derive the users’ tagger trustwor-
thiness. In our setting, edge capacity and flows take integer values. Thus, solving opti-
mal max-flow with Edmonds-Karp (as done for Advogato) costs O(Tmax(1 − pd)|V ||E|),
Because it takes at most Csupersource = Tmax(1− pd)|V | augmentations. This is compu-
tationally prohibitive (§6.3), therefore we introduce a heuristic.
The heuristic executes Tmax Breadth First Search Operations (BFSO). The BFSO

starts from the supersource. It visits every user i in the flow graph once in a BFS
fashion. When the heuristic visits a user i, it scans i’s children in a random order. For
each child, it stores the last parent user that the BFSO visited before scanning the
child. We denote the last visited parent of a scanned user j as parent(j).
Thus the scanned nodes are the leafs of a tree whose root is the supersource. It scans

the children in a random order in order to give all children the same probability to be
accepted.
When the BFSO scans i’s child j, it backtracks from j to the supersource through i as

follows. First, it checks whether the edge i→ j has at least capacity 1. If yes, it checks
whether the capacity of the edge parent(i)→ i is at least 1. If yes, it sets i = parent(i)
and repeats until parent(i) is the supersource. If backtracking reaches the supersource,
it adds 1 unit of flow to the edge j → supersink. It also reduces the capacity of the edges
along the backtracking path by 1. If the edges on the backtracking path upstream of
i do not have at least capacity 1, the algorithm does not scan any more of i’s children.
This step costs O(∆), where ∆ is the graph diameter.
If the algorithm adds 1 unit of flow to the edge j → supersink, j is considered for

a subsequent visit, but is not considered for a subsequent scan by the same BFSO. If
the algorithm does not add 1 unit of flow, j can be scanned from another parent. The
BFSO continues until there are no more users to be visited.
After the BFSO ends, a new one starts from the supersource. It repeats this process

until Tmax BFSO are executed. The capacities and flows of the edges remain as ad-
justed during the previous BFSO. After Tmax BFSO, the flow on the edge j → supersink
corresponds to j’s tagger trustworthiness.
The algorithm performs a total of Θ(Tmax|E|) user scans. At each scan it performs

O(∆) capacity updates for each of the user’s ancestors. Thus, our heuristic costs
O(Tmax|E|∆). The diameter ∆ of social graphs (small world networks) is typically
O(log(|V |) (measured to be 9 to 27 in real OSNs [Mislove et al. 2007]). In the evalu-
ation of this paper, our 200K-user social graph has diameter 18.
Our heuristic takes advantage of the fact that all users are connected to the su-

persink. Thus, it finds in O(1) an approximation of the shortest residual path to the
supersink. It maintains the guarantees required by the trust inference method and of-
fered by the optimal max-flow solution using Edmonds-Karp’s algorithm: a) if there is
flow on a link j → supersink, there will be flow on this link in the optimal solution; and
b) if there is flow on j’s outgoing links there will be flow on the link j → supersink. The
heuristic misses the cases in which it would be preferable to not use ancestor capacity
to accept a child j but to use it for another child m, because child j may have another
parent that can pass flow to it, while child m does not. However, in our 200K-user net-
work flow graph this was not often the case, as indicated by the fact that the max-flow
achieved with our heuristic was typically ∼ 96% of the optimal max flow. We analyze
the assurances provided by the max-flow-based tagger trustworthiness mechanism in
§4.2.

3.3.3. Periodic Update of Tagger Trustworthiness. MaxTrust computes the tagger trustwor-
thiness of each node by using a tagging similarity-based trust graph. However, the so-
cial graph and the tags can change drastically over sufficiently long periods of time.
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Fig. 5. Illustration of a human-readable FaceTrust credential for an online book review.

To address the dynamicity of the tagging-similarity trust graph FaceTrust computes
the tagger trustworthiness value by re-running MaxTrust periodically, as often as it
is computationally practical. Judging by the results in §6.3, we estimate that on a sin-
gle off-the-shelf machine with 20-30GB memory, we could compute MaxTrust for a 10
million user social graph within 12 to 24h, thus allowing for daily recomputation. We
use the periodically computed tagger trustworthiness values to compute the veracity
scores on-demand, because the veracity computation (Equations 1,2 and 3) does not
entail a significant overhead.

3.4. OSN-Issued Credentials

After the OSN provider (§2.3) is able to calculate the assertion veracity score for a user
i’s assertion At

i, the OSN provider can issue a relaxed credential for this assertion. As
shown in Figure 1 and Figure 5, a credential issued by an OSN includes the assertion
type t, the assertion At

i, and the assertion veracity score. The assertion veracity score
is computed on-demand upon a verifier’s request to view the credential.
We use non-cryptographic web-based credentials that satisfy the goals listed in §2.5.

Each credential as seen by the verifiers consists of:

— The list of assertions the user is certifying with their veracity scores and their
types.

—Content: An excerpt of the message (review, email, random string etc). for which the
credential is used.

—Context: A URL to or a description of the message for which the credential is used.

For example, a credential used for an online book review may include the following
fields:

— [profession, CS professor, 100%, 17 tags]
—This is a great textbook and I highly recommend it ...
— http://www.amazon.com/Network-Design/product-reviews/100
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This design binds a credential to the content and context it is used for, and ensures
a credential’s authenticity, as it cannot be used to verify the assertion in a different
content and context. Using the Amazon review example, FaceTrust shows to the user
the URL of the credential (address bar in Figure 5). The user can subsequently add
this URL to his review.
If a user wishes to obtain a credential to verify his identity attribute(s) when he posts

a message on an online forum, he first requests a unique HTTPS URL or ID for the
credential from the credential issuing website. He then copies the credential URL or
ID into the message he wishes to use, publishes the message, and obtains the message
URL (context). Subsequently, he selects the assertions he wishes to certify, and submits
them together with an excerpt of his message (content) and themessage URL (context).
This completes the credential request process. The OSN provider creates a credential
linked to the credential URL, which includes the selected assertions and their veracity
scores, the excerpt of the message, and the message URL.
To ensure integrity, once a credential is created, the user cannot modify it. Our im-

plementation also includes the number of total tags an assertion has in a credential
to give a verifier more information for better judgment. If a credential has expired
assertions, for every such assertion an expiration notice is included, along with the
expiration date and the latest veracity score.
To verify the credentials of a user, a human verifier can follow the HTTPS credential

URL and view the credential through their browser. The FaceTrust site employs a CA-
signed certificate. The use of secure HTTP addresses most challenges to the security
of the web channel. However, the system still remains vulnerable to phishing attacks
if the verifier is not trained to expect an HTTPS page or does not properly verify the
certificate.
In case the online message cannot include a credential URL, e.g., Amazon strips

URLs from user reviews, the user can instead include a specially formatted unique ID
of the credential in his message when he requests the credential. A browser extension
can read the specially formatted ID and prompt the user to view the credential.
In case a user wishes to use a credential to verify attributes to a human verifier with

which he exchanges messages, the verifier and the user run the following protocol. The
verifier sends to the user a randomly generated string. Subsequently, the user includes
this string in the content field of the credential along with an excerpt of the message
he wishes to send to the user.
FaceTrust’s design also offers an XML web service API, which can be accessed by on-

line verifying services, such as web sites that perform automated access control based
on the user’s identity attributes (e.g., age). The verifier presents a randomly generated
string to the user, and the user generates a credential with the random string in the
content field. Subsequently, the user posts to the online service the credential URL or
ID that the user uses to certify his attributes, and the online service can retrieve the
credential through an API call.
It is important to note that the credential does not reveal any personally identifiable

information, unless the user has explicitly included such information in the assertion
or the message. We also emphasize that the verification of the binding between the cre-
dential and the content and context it is issued for falls exclusively upon the verifying
user or service. For example, the verifier is solely responsible for determining whether
the content field in the credential matches the review or the random string.
In an earlier design of FaceTrust [Sirivianos et al. 2009], we proposed to use cryp-

tographic anonymous, unlinkable, and non-transferable credentials [Camenisch and
Herreweghen 2002]. We discarded this design to obviate the need for user-side crypto-
graphic operations, as it has been shown it is difficult for average users to use cryptog-
raphy [Whitten and Tygar 1999].
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However with our solution, a user can ask a colluder that has a desired identity at-
tribute to generate a credential for him; for example an online verifying service would
present the random string to the user, which the user would relay to the colluder who
would create the credential and give its URL or ID to the user. Because the credentials
are anonymous, the verifying service would have no way to verify that the claimed
identity attribute belongs to the colluder and not the user. This collusion takes place
without the colluder having to rest control of all his credentials to the user. On the
other hand, with cryptographically non-transferable credentials, such collusion would
require that the user becomes able to fully impersonate the colluder. The latter acts
as a deterrent for the collusion between users in the case of cryptographic credentials.
Although our solution does not entail such deterrent, we believe the fact that a new
credential needs to be issued for each context (e.g., a new credential for every time a
user enters an age-restricted site) makes such collusion sufficiently impractical.

3.5. Mitigating Sybil Assertion Posters

We now describe how we improve our scheme to defend against the Sybil assertion
poster attack (§2.4). Under this attack, coalitions of dishonest users create a single or
more Sybil accounts, post assertions on behalf of those Sybil accounts and tag them
as true. The dishonest users subsequently share the Sybil accounts and use their as-
sertions to create FaceTrust credentials. Because honest users are not connected to
the Sybil accounts and cannot tag their assertions, dishonest users do not need to tag
differently from their honest friends. This results in high tagging similarity between
honest and dishonest users. Subsequently, dishonest users do not have lower tagger
trustworthiness than honest users and their tags on the false assertions are not dis-
counted.
We simultaneously employ two techniques to mitigate this attack. The first tech-

nique addresses the case in which a coalition of dishonest users creates a single or a
small number of Sybil accounts. We observe that colluders can create assertions on
the few Sybil accounts, tag them as true and use them unimpeded to present multi-
ple false credentials. We mitigate this attack by imposing a quota on the number of
credentials each account can issue. A reasonable approach in enforcing quotas is to
impose an upper limit on the number of credentials a user can issue per month for
each type of assertion, based on expected usage.
The second technique addresses the case in which the coalition of dishonest users

createsmultiple Sybil accounts to overcome the credential quotas. Wemodify the asser-
tion veracity Equation 1 as follows. Our solution relies on the assumption that honest
users are typically both honest taggers and honest assertion posters. We can there-
fore use our Sybil-resilient tagger trustworthiness measure to infer how trustworthy
their assertions are. To this end, we multiply the computed assertion veracity aA of an
assertion A posted by user j by a normalized value of the tagger trustworthiness of j.

a′A = aA ·min(1, c+ (1− c)wt
j/w) (3)

w is the tagger trustworthiness value for which (1 − pd)|V | users have greater or
equal tagger trustworthiness. pd is the portion of users V in the trust graph G(V,Et)
that are dishonest. c is a tunable parameter in [0,1], that assigns a minimum veracity
aA ·c to assertion A in case the tagger trustworthiness wt

j of j is 0. The factormin(1, c+

(1− c)wt
j/w) is 1 for taggers with trustworthiness higher than w.

Because our trust inference method assigns very low tagger trustworthiness scores
to multiple Sybils, this adjustment results in decreased veracity for assertions posted
by colluders in this attack. Furthermore, because under several settings dishonest
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users have less tagger trustworthiness than honest users (§6.1.2), this equation results
in further decreasing the veracity of false assertions.

3.6. Dealing with underground online marketplaces for tags and credentials

FaceTrust may create perverse incentives that encourage the undesirable creation of
a “Sybils as a Service” offering in underground markets. The main two offerings could
be: (a) login credentials for Sybil accounts to enable their buyers to use the Sybils’
credentials; and (b) Sybils that would tag assertions posted on the buyer’s account to
make them appear more truthful.
Offering (a) is essentially a manifestation of the Sybil assertion poster attack (§2.4).

In §3.5, we describe how to address it. Additionally, in §6.1.3.4 we illustrate the ef-
fectiveness of our approach and its limitations when attackers deploy many Sybils to
overcome the quota. We note however that in the underground marketplace setting,
the buyer of the Sybil assertion poster accounts is likely to control an account that re-
flects his real persona and thus has sufficiently high tagger trustworthiness. The buyer
is incentivized to connect his real account to the Sybil he purchased, assign high user-
defined similarity to it, and tag similarly with it. The aim is for the Sybil to obtain
higher tagger similarity yielding higher assertion veracity scores. Therefore, in this
setting the Sybil assertion posters gain tagger trustworthiness not only from the dis-
honest accounts of their creators (as is the case for our evaluation in §6.1.3.4), but from
the accounts of their purchasers too. Nevertheless, if the buyer acquires and connects
to a small number of Sybils the credentials he can issue are limited by the quota. If on
the other hand, the buyer acquires and connects to a large number of Sybils (greater
than 10, as can be seen in Figure 11(b)), MaxTrust ensures that the amount of tagger
trustworthiness that flows to each Sybil is significantly diminished compared to when
he connects to a few Sybils.
With regards to offering (b), FaceTrust does not have an in-built mechanism to de-

fend against such activity. Sybil account buyers are actually incentivized to connect
their honest user accounts to Sybils that promise to help them, which goes against
our assumption that honest users do not befriend fakes easily. This allows Sybils to
infiltrate the network and defeat MaxTrust. The only way to address this concern is to
discourage users from befriending Sybils regardless of whether they perform desirable
actions. We believe that such a discouragement is plausible because two users cannot
be AIR friends unless they are also Facebook friends. This means that users who con-
nect to Sybils expose themselves and their friends’ Facebook information to unscrupu-
lous entities. We believe this fact alone will dissuade many honest users from using
offering (b). Furthermore, we note that such an underground service should clearly in-
dicate that its Sybils perform this questionable activity, so that users know to connect
to them. That is, this service would be announced on the Sybils’ profiles and the un-
derground online marketplace. This would make it easy for Facebook or the FaceTrust
provider to use simple Machine Learning classifiers to detect and weed out such fraud-
ulent AIR profiles.

4. ATTACK-RESISTANCE ANALYSIS

We now discuss the attack-resistance of our design based on the assumptions, threats
and goals listed in §2.3, §2.4 and §2.5.

4.1. Assertion Credibility Analysis

First, we discuss the assurances that the assertion veracity Equation 1 offers. For
simplicity, we assume that the user j has higher than or equal tagger trustworthiness
than w, thus we do not need to consider the discounting introduced in Equation 3.
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THEOREM 4.1. If the sum of the weights wt
j of the dishonest users that have incor-

rectly tagged a false assertion by user i is less than 0.75 of the sum of the weight of the
users that have tagged the assertion, the assertion will have less than 0.5 credibility.

PROOF 4.2. We denote as R the ratio of the sum of the tagger trustworthiness of the
dishonest users that have tagged i’s false assertion over the sum of the tagger trustwor-
thiness of the users that have tagged the assertion. The dishonest friends of i tag the
false assertion as true (1). The honest users tag the assertion as false (-1). The goal of
the system is to make the credibility of the false assertion be less than 0.5.
Using Equation 1, we derive the inequality: (R)1 + (1−R)(−1) < 0.5⇔ R < 0.75.

The above inequality also means that honest users have to make sure that the sum
of the tagger trustworthiness of their friends that will try to attack them by tagging
their honest assertions as false does not exceed 25% of the total sum of their friends.
This is a reasonable assumption for dishonest and honest users.
We now examine Equation 2. The threshold M dictates how many dishonest users

with a given tagger trustworthiness need to collude in order to make an assertion
have non-zero veracity. A reasonable value for M is a multiple of the average tagger
trustworthiness of honest users as derived by simulations (§ 6.1.2.) In the worst case,
we need to consider dishonest users that have so far been tagging honestly and thus
have obtained as high tagger trustworthiness as honest users. Assuming that that
honest users have on average w tagger trustworthiness, at least M/w dishonest users
have to tag an assertion in order for it to have non-zero veracity.

4.2. Tagger Trustworthiness Analysis

We now analyze the assurances offered by the trust inference method used to derive
a user’s tagger trustworthiness (§ 3.3.2). We observe that our max-flow-based trust
inferencemethod satisfies the bottleneck property: it ensures that the sum of the tagger
trustworthiness of the dishonest user and its Sybils cannot exceed the sum of the
capacity of the Sybil creator’s incoming edges.
The purpose of our analysis is to derive the ratio Rall of the maximum sum of the

tagger trustworthiness of dishonest users over the sum of the tagger trustworthiness of
all users, when dishonest users are placed randomly in the social graph. Assuming that
this ratio is on average maintained among the tagger trustworthiness of the friends
of a user, Rall becomes a useful measure of the security of the assertion veracity, as is
equivalent of the ratio R defined in 4.1.
We proceed by providing an upper bound Md on the sum of the tagger trustworthi-

ness of dishonest users and their Sybils. The tagger trustworthiness assigned to the
Sybils of a dishonest user equals the sum of the flows on the edges connecting the
Sybils to the supersink. It is upper-bounded by the capacity Cu of the incoming edges
of the dishonest user u that creates the Sybils. The closer the dishonest user is to the
supersource, the higher the capacity of its incoming edges is. This is an inherent issue
for all trust metrics, including TrustRank [Gyöngyi et al. 2004] and Sumup [Tran et al.
2009]: the closer a node is to the trust seed users the more effective its Sybil attack
is. The capacity of the incoming edges of the dishonest creator of Sybils depends on
the distance from the supersource, the number of outcoming edges of users (fanout),
and the capacity of the edges connecting the supersource to the trust seeds. Given
this observation, the Sybil-limiting assurance of our method relies on how capacity is
distributed among the graph edges.
For simplification, the following analysis assumes that the similarity-based trust

graph consists of trees rooted at the trust seeds. We also do not consider tagging-
similarity in the edge capacity allocation during the transformation of the trust graph
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G(V,Et) to the network flow graph, thus assuming that all edges in Et denote equal
similarity. By not considering tagging similarity, we provide a pessimistic upper bound
for Md as the use of tagging similarity in assigning capacities results in the Cu of dis-
honest users to decrease. We also assume that there are no outgoing edges from dis-
honest users to honest users, which maximizes the tagger trustworthiness the Sybils
of dishonest users can obtain.
As described in § 3.3.2, the out-degree of the supersource is equal to the number

of trust seeds |S|. We assume that the out-degree of all non-leaf users u is f . Each
trust seed is the root of a subtree of |V |/|S| nodes. V includes honest and dishonest
users and does not include Sybils that dishonest users may create. Each user u is
connected with an edge of capacity Tmax with the supersink. Let pd denote the portion
of users in the similarity graph G(V,Et) that are dishonest. According to §3.3.2 (Phase
1), Csupersource = Tmax(1− pd)|V | and the capacity Cs of the edge from the supersource
to a trust seed s is Csupersource/|S|. Also, d = ⌊logf Cs⌋ denotes the maximum distance
of users from a trust seed.

THEOREM 4.3. For a given size |V | of the trust graph, given out-degree f and given
number of trust levels Tmax, the maximum sum Md of the tagger trustworthiness of
dishonest users and their Sybils is only dependent on the portion of users that are dis-
honest pd and the number of trust seeds |S|. It does not depend on the number of Sybils
that dishonest users employ. Md is expressed as follows:

Md = pd · |S|( Cs

(1− (1− pd)
d

pd
+ (4)

f Tmax((f(1 − pd))
d − 1)

(1 − f)(f(1− pd)− 1)
+

Tmax((1 − pd)
d − 1)

(1− f)pd)
)

PROOF 4.4.
If a user u is at distance 1 ≤ k ≤ b from a trust seed s, the capacity of its incoming

edges Cu(k) is:

Cu(k) =
Cs − Tmax

∑k−1

i=0
f i

fk
=

Cs − Tmax
fk

−1

f−1

fk
(5)

We aim at determining the sum of the flow Md that can be allocated to the links that
connect dishonest users and their Sybils with the supersink when we solve the max-
flow from the supersource to the supersink. Md corresponds to the maximum sum of
the tagger trustworthiness of the dishonest users and their Sybils. It is equi-valent of
the sum of the capacity of the incoming edges of the dishonest users. This is because in
the tree topology we are considering, a dishonest user can ensure that all its incoming
edge capacity is utilized by creating enough Sybils and connecting its outgoing edges to
them.
We consider the case when dishonest users are placed randomly in the graph. This is

in fact a pessimistic assumption that results in a higher Md, because dishonest users
are less likely than honest users to be placed close to trust seeds.
To derive the total maximum sum of the flow Md, we sum up the capacities Cu(k) of

dishonest users across varying distances from the trust seed. Under our assumptions,
the capacity of the incoming edge Cu(k) of a dishonest user is assigned exclusively to
Sybils or other dishonest users. Thus, when we account for the capacity of dishonest
users at distance k, we should not account for the capacity of dishonest users that have
dishonest ancestors.
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Fig. 6. Ratio Rall of the maximum sum of the tagger trustworthiness of honest users over the
sum of the tagger trustworthiness of all users, when dishonest users utilize all their capacity to
provide flow (tagger trustworthiness) to dishonest users and Sybils. |V | = 200K, Tmax = 10 and
f = 10

At distance 1 ≤ k ≤ d from the trust seed, the average number of users (honest and
dishonest) with no dishonest ancestor is fk(1 − pd)

k−1. Correspondingly, the number of
dishonest users at distance k with no dishonest ancestor is on average pdf

k(1 − pd)
k−1.

We derive that the maximum sum of the tagger trustworthiness Md of dishonest users
when dishonest users are placed randomly in the social graph and utilize all their
capacity Cu to provide trust flow to dishonest users and Sybils is:

Md = pd · |S|

d
∑

k=1

fk(1− pd)
k−1Cu(k) (6)

The above equation is equivalent to Equation 4.

LetD ⊂ V denote the set of dishonest users randomly distributed in the social graph.
The average sum of the tagger trustworthiness of users in D is:

(⌊logf |V |⌋ − 2)
|D|Csupersource

|V |
(7)

The honest users in V \D obtain the remaining capacity:

Csupersource− (⌊logf |V |⌋−2)
|D|Csupersource

|V |
= Csupersource(1− (⌊logf |V |⌋−2)|D|/|V | (8)

We can now provide the ratio Rall of the maximum sum of the tagger trustworthi-
ness of dishonest users over the sum of the tagger trustworthiness of all users, when
dishonest users are placed randomly in the social graph and utilize all their capacity
to provide flow to dishonest users and Sybils.

Rall =
Md

Csupersource

=
Md

Tmax|V |(1− pd)
(9)

According to Equation 1, a good ratio Rall to prevent dishonest users from making
their assertions to obtain a veracity score higher than 0.5, is on average 0.75. As can be
deduced from the above equations and is illustrated in Figure 6, the ratioRall increases
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substantially as a function of the portion of dishonest users pd and decreases slightly
as a function of the number of trust seeds |S|. It does not depend on the number of
Sybils that dishonest users employ. Under the examined setting (|V | = 200K, f = 10,
Tmax = 10), increasing |S| from 100 to 1000 results in Rall decreasing by ∼ 0.1. In
addition R remains below 0.75 as long as pd is below 0.4.
The ratio R is large even when pd is small (e.g, R = 0.44 when pd = 0.2 and
|S| = 400) because our model examines the worst case scenario: a dishonest user never
distributes capacity to children that are honest. This corresponds to dishonest users
assigning 0 tagging similarity to their honest friends, while their honest friends as-
sign 1.0 tagging similarity to them. Under our model, as the number of trust seeds
|S| increases, honest users have more opportunities to receive capacity from the trust
seeds or other honest users. This is the reason we observe the decrease of Rall as |S|
increases.
Our simulation-based evaluation (§ 6.1.2) considers a real social graph (under which

honest users can be connected to trust seeds via multiple paths), thus it yields higher
tagger trustworthiness for honest users.
Under our tree-topology model, the existence of multiple seeds also mitigates the

impact of a focused adversary that manages to be close to a trust seed and establish
high tagging similarity with it. This is because this focused dishonest user at distance

k from the trust seed obtains at most (Csupersource/|S| − Tmax
fk

−1

f−1
)/fk capacity for its

incoming edges instead of (Csupersource − Tmax
fk

−1

f−1
)/fk.

5. IMPLEMENTATION

We implemented FaceTrust as a three-tier web application so that we can evaluate the
design and its assumptions using a real-world deployment. The front-end of FaceTrust
is the “Am I Really?” Facebook application, which is implemented using the PHP Face-
book developer API. The FaceTrust application server serves the HTTP content, col-
lects assertions and tags, as well as maintains the social graph. The FaceTrust server
employs MySQL to store the user, assertion, tagging, veracity and social graph infor-
mation. It uses a Java implementation of MaxTrust.
Game with a Purpose:We built the “Am I Really?” (AIR) Facebook application using
a “game with a purpose” design to incentivize social tagging. AIR is a “micro-polling”
application. Users post facts about themselves and ask their AIR friends, which are
also there Facebook friends, to tag them as true or false. For example, a user may
post the question “Am I really older than 18?” or questions of lighter nature, such as
“Am I really good at baseball?” AIR users can view the veracity of a friend’s assertion
only after they have tagged his assertion, and after the assertion amassed a threshold
number of tags (3 in our implementation).
According to Facebook’s terms of use, we are not allowed to store long term the

friends of a user that the Facebook API provides. To circumvent this restriction, AIR
asks a user to declare which of his friends he would like to have as friends on AIR. To
further ensure that connections in the AIR social graph correspond to real life acquain-
tances (§2.3) and to address the problem of promiscuous users that naively establish
Facebook connections with malicious users, we explicitly ask a user to declare as AIR
friends only persons with whom he has met in person.
We also built a credential issuing website https://www.facetrust.net [FaceTrust-

Credentials ], which links each user’s account with their Facebook account. A user
that wishes to prove an identity attribute to other users or online services requests a
credential as we describe in §3.4. The issuing website pulls the user’s assertions and
their veracity scores from the AIR database back-end.
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6. EVALUATION

We evaluate the following aspects of FaceTrust:
Effectiveness: How strongly do assertion veracity and tagger trustworthiness corre-
late with the truth, and how well does the design withstand incorrect user tagging,
and colluder and Sybil attacks?
Practicality and usage: How often and how accurately does a user tag his friends to
help them obtain credentials?
Computational feasibility: A social network may consist of several hundreds of mil-
lions of users. Will an OSN provider have sufficient computational resources to mine
the social graph and derive tagger trustworthiness scores?
We use simulations on a sample Facebook social graph and a real-world deployment

to answer these questions. We discuss each aspect in turn.

6.1. Effectiveness

We first examine whether true assertions obtain high veracity and false assertions
obtain low veracity, even in the presence of dishonest users and Sybil attacks. We also
study the limits of our approach, i.e., under which conditions and attack strategies
false assertions can obtain high veracity.
We start by evaluating the ability of our max-flow-based trust inference scheme,

MaxTrust (§3.3.2), to assign low trustworthiness to dishonest users and Sybils. We
then proceed to analyze the effectiveness of the assertion veracity mechanism (§3.2),
which weighs user tags based on tagger trustworthiness. In this evaluation, we also
compare the effectiveness of MaxTrust to another max-flow-based trust inference, Ad-
vogato.
For a more realistic evaluation, we use a crawled sample of the Facebook social

graph, which consists of a 200K-user connected component obtained from a 1M -user
sample [Gjoka et al. 2010] via the “forest fire” sampling method [Leskovec and Falout-
sos 2006]. The average and maximum number of friends of each user in the graph is
∼ 24 and 313, respectively. The diameter of this graph is 18 and the clustering coeffi-
cient is 0.159.

6.1.1. General Simulation Settings. Each user in the social graph posts a single assertion
of the same type on his profile. Honest users always post true assertions and dis-
honest users always post false assertions. Furthermore, the honest users tag as true
the assertions posted by their honest friends and as false the assertions posted by
their dishonest friends. The dishonest users tag all assertions as true, regardless of
whether they are true or not. By doing so, dishonest users collude to increase the ve-
racity of each other’s assertions. When dishonest users behave in exactly the opposite
way honest users do, they become disconnected from the honest nodes in the tagging-
similarity-based flow graph. By truthfully tagging the assertions of honest users, dis-
honest users attempt to have common tags with other honest users in order to increase
their tagging similarity with trustworthy users. This is a manifestation of the tagger
camouflage attack (§2.4). Both honest and dishonest users are randomly distributed in
the social graph, unless specified otherwise. The case of dishonest colluders that form
coalitions in the social graph is discussed in §6.1.3. In addition, each user tags the as-
sertions of at most F of his friends. We vary F to reflect various degrees of adoptability
of social tagging.
To obtain the tagger trustworthiness, we use MaxTrust described in §3.3.2 and Ad-

vogato. Throughout the result description, MT and ADmeansMaxTrust and Advogato,
respectively. We obtain the tagger trustworthiness as described in §3.3.2. We do not
consider the user-defined similarity (§3.3.1), as we model no notion of a priori trust
between users. We set Tmax = 100 (§3.3.2). For each experiment, the minimum sum of
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Fig. 7. Mean tagger trustworthiness in range [0,Tmax = 100]: (a) as a function of the frac-
tion of honest nodes when the maximum number F of friends a user tags is 20; (b) as a func-
tion of F when 80% of users are honest; Dishonest users do not employ Sybils. MT=MaxTrust,
AD=Advogato, ADwTS=Advogato with tagging similarity based trust graph.

the trustworthiness of taggers M (§3.2) is equal to the average tagger trustworthiness
of honest users. When 50% of the users are honest, F = 20 and we use 1000 randomly
selected trust seeds, this is 47.5. We set c = 0, 2 (Equation 3). We vary the sum of the
capacity of the outgoing edges of the supersource, Csupersource, depending on the por-
tion of dishonest users. That is, Csupersource increases as the portion of dishonest users
decreases (§3.3.2). For MaxTrust, we employ 1000 trust seeds, which are randomly se-
lected among the honest users. For Advogato, we randomly select a single trust seed.
We repeat each experiment 5 times (with a different set of honest/dishonest users,
tags, and seeds) and plot the mean and the 95% confidence intervals (too small and not
visible in most configurations).

6.1.2. Tagger Trustworthiness Effectiveness. As described in §3.2, the tags on assertions
are weighted by their tagger’s trustworthiness. Therefore, we first need to examine
the effectiveness of tagger trustworthiness (§3.3) under various strategies employed
by dishonest users. We consider the tagger trustworthiness scheme effective if: a) it
assigns substantially lower trustworthiness to Sybil users than to honest users; and
b) it does not assign higher trustworthiness to dishonest users than to honest ones.

Dishonest users do not employ Sybils. In this series of experiments, dishonest users
do not employ Sybils. In Figure 7(a), we observe that the trustworthiness of hon-
est users (MT-Honest) is substantially higher than the one of dishonest users (MT-
Dishonest) when the portion of honest users is small. The reason is that honest and
dishonest users differ in terms of tagging. When the portion of honest users is rela-
tively low and honest and dishonest users are placed randomly, there are many oppor-
tunities for honest and dishonest users to tag dissimilarly. Because tagging similarity
captures the difference in tagging behavior between dishonest and honest users, this
translates to low pairwise trust between them. In addition, because trust is seeded at
honest users, MaxTrust’s transitive trust mechanism assigns lower tagger trustwor-
thiness to dishonest users.
When the portion of dishonest users is small, e.g., 10%, dishonest users have al-

most equal trustworthiness to the honest ones. But the eventual measure of interest
is the assertion veracity of fake assertions, and this score is low, as desirable. This is
because there are more tags from honest users than there are from dishonest users
(Figure 9(a)). At the same time, we observe that when the honest users are less than

ACM Transactions on the Web, Vol. 9, No. 4, Article 39, Publication date: March 2014.



39:26 Michael Sirivianos et al.

 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000T
a
g
g
e
r 

tr
u
s
tw

o
rt

h
in

e
s
s

# Sybils

MT-Honest

MT-Dishonest

MT-Sybils

(a) MaxTrust

 0

 10

 20

 30

 40

 50

 60

200 400 600 800 1000T
a
g
g
e
r 

tr
u
s
tw

o
rt

h
in

e
s
s

# Sybils

AD-Honest

AD-Dishonest

AD-Sybils

(b) Advogato

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

Tagger trustworthiness

Sybil, mean=0.57

Dishonest, mean=13

Honest, mean=41

(c) MaxTrust

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

Tagger trustworthiness

Sybil, mean=0.84

Dishonest, mean=10.9

Honest, mean=17.6

(d) Advogato

Fig. 8. (a,b) Mean tagger trustworthiness as a function of the number of Sybils each dishonest
user creates; (c,d) CDF(Cumulative Distribution Function) of the tagger trustworthiness of hon-
est, dishonest and Sybil users; Dishonest users employs 200 Sybils each, F = 20 and 50% of users
are honest.

30% (which means assertions are likely to have more fake tags), they obtain substan-
tially higher trust-worthiness than dishonest ones. This results in the veracity of false
assertions being significantly lower than the veracity of true ones (Figure 9(a)), even
under this extreme attack scenario.
On the other hand, Advogato assigns almost equal trustworthiness to both honest

(AD-Honest) and dishonest users (AD-Dishonest), regardless of the portion of dishon-
est users. It is because Advogato does not consider the tagging similarity while con-
ducting the max-flow computation. This result demonstrates the importance of tagging
similarity, which results in dishonest users having less influence on the system’s oper-
ation.
In Figure 7(a), we observe that the average tagger trustworthiness increases as the

portion of dishonest users decreases. Because Csupersource increases as the dishonest
users decreases, more users can obtain higher value of tagger trustworthiness.
Figure 7(b) shows the trustworthiness of honest taggers as a function of the max-

imum number of friends F each user tags. This figure illustrates the importance of
F . As F increases, the number of common tags Ct (§3.3.1) used to derive the tagging
similarity increases. For F < 10, the tagging similarities between users are almost 0
and the similarity-based trust graph is disconnected, resulting in honest users getting
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very low trustworthiness. As F increases, the trust graph becomesmore connected and
honest users obtain increased tagger trustworthiness.
When tagging is infrequent, a large fraction of edges between honest users do not

have high tagging similarity, as it becomes less likely for honest users to tag the same
assertions. As a result, honest users get relatively low tagger trustworthiness. As can
been seen in Figure 7(b), honest users to achieve high tagger trustworthiness, F should
be ≥ 10.
In Figure 7(b), we also observe that Advogato yields a lower mean of tagger trust-

worthiness for honest users than MaxTrust, even if we incorporate tagging similarity
in allocating the capacities of Advogato’s network flow graph. The main reason is that
Advogato uses a single trust seed and the coverage of the trust propagation depends
on the position of the seed in the graph.

Dishonest users employ Sybil Taggers. To evaluate MaxTrust’s resilience to Sybil
attacks, all the dishonest users create a varying number of Sybils. All the Sybils are
connected to their creator and are fully connected to each other. Sybils tag the false
assertions of their creator as true to increase the veracity of those assertions. The
creator always has tagging similarity 1.0 with all its Sybils. This corresponds to the
configuration that maximizes the tagger trustworthiness of Sybils.
As can be seen in Figure 8(a), when the number of Sybils is 200, the tagger trustwor-

thiness of Sybils is on average 72 and 22 times lower than the trustworthiness of honest
and dishonest users, respectively. This is due to the bottleneck property of our trust
inference mechanism (§3.3.2), which limits the amount of trust that can be assigned
to the Sybils of a dishonest user. While dishonest users that do not employ Sybils get
a similar trustworthiness score with honest users (Figure 7(a)), the trustworthiness of
dishonest users employing Sybils is on average 3 times lower than the trustworthiness
of honest users.
We also observe that as the number of Sybils increases from 10 to 200, the tagger

trustworthiness of honest and dishonest users also decreases by 12% and 30%, respec-
tively. The reason is that the incoming flow that passes through a dishonest user is now
assigned to the Sybil users instead of other users downstream. Nevertheless this de-
crease is not substantial, especially for honest users, because there are multiple trust
paths through which flow can reach these users.
In Figure 8(b), we observe that Advogato can also assign lower tagger trustworthi-

ness to dishonest user employing Sybils than to honest users. However, the tagger
trustworthiness of honest users decreases substantially as the number of Sybils in-
creases. The reason is that Advogato does not use the tagging similarity trust graph,
therefore allowing for more trust to flow to dishonest users and their Sybils. In this
case, the numerous Sybils have their trustworthiness increase by a small margin,
whereas the trustworthiness of honest users decreases drastically.
We now examine how tagger trustworthiness is distributed among the users. Fig-

ure 8(c) and Figure 8(d) depict the CDF(Cumulative Distribution Function) of the tag-
ger trustworthiness of honest, dishonest and Sybil users of MaxTrust and Advogato,
respectively. As can be seen, for both of MaxTrust and Advogato, almost 80% of Sybil
users has 0 tagger trustworthiness. However, while there is substantial variance in
the trustworthiness scores of honest and dishonest taggers for MaxTrust, the trust-
worthiness distributions of honest and dishonest taggers are similar to each other for
Advogato.
Because we set the assertion veracity threshold (Equation 2) to be close to the mean

tagger trustworthiness, the tagger trustworthiness distribution greatly affects how the
assertion veracity is computed. In MaxTrust we can safely set the threshold equal to
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Fig. 9. Mean veracity of true and false assertions when F = 20: (a) as a function of the fraction
of honest nodes when dishonest users do not employ Sybils; (b) as a function of the number of
Sybils per dishonest user when 50% of users are honest.

the mean tagger trustworthiness for that portion of honest users, and in many cases
the honest users that tag an honest assertion have sufficient tagger trustworthiness.

Assertion poster camouflage attack. We also evaluate the resilience of FaceTrust
when dishonest users use the assertion poster camouflage attack (§2.4). Honest users
post one true assertion, and dishonest users post one false assertion with a varying
number (1-10) of true assertions for camouflage. We obtain the average tagger trust-
worthiness of honest and dishonest users under 80% honest nodes, 200 Sybils per dis-
honest users and F = 20. We observe that the effect of the camouflage attack on the
resulting tagger trustworthiness is insignificant. For the sake of conciseness, we opted
not to plot this result.
Although it is not demonstrated in our experimental setting, this attack can be fur-

ther mitigated by assigning distinct tagger trustworthiness scores for each type. As
a result the camouflage attack cannot occur for many assertions of the same type be-
cause the tagging similarity of the user’s dishonest friends with honest friends for that
particular type will drop, and so will their tagger trustworthiness.

Tagger trustworthiness evaluation conclusions. The above results illustrate that un-
der our tagging-similarity-based trust inference mechanism (MaxTrust) dishonest
users obtain substantially lower trustworthiness than honest users when the portion
of honest users is small. In addition, we show that Sybil users obtain almost two or-
ders of magnitude less trustworthiness, under common Sybil strategies. Our results
have also illustrated the importance of the frequency of tagging, as modeled by the
parameter F .

6.1.3. Assertion Veracity Effectiveness. The assertion veracity scoring is dependent on
the mechanism for determining the weight of the taggers, which we evaluated in the
previous section. We now evaluate the assertion veracity computation technique itself
(§3.2) under varying attack scenarios.

Dishonest users do not employ Sybils. Figure 9(a) plots the mean veracity of honest
and false assertions as a function of the portion of honest users, when dishonest users
do not employ Sybils. We observe that when the fraction of honest users exceeds 50%,
the mean veracity of true assertions substantially exceeds that of false ones. Unlike
plain majority voting, MaxTrust assigns low veracity to false assertions even when
the fraction of dishonest users is large. We computed the Pearson correlation coeffi-
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Fig. 10. CDF(Cumulative Distribution Function) of assertion veracity when dishonest users
employ Sybils

cient between the veracity values for MaxTrust in Figure 9(a) and the ground truth
(true or false) and we found a strong correlation of 0.91. We also observe that Ad-
vogato achieves similar performance to MaxTrust. As the portion of dishonest users
increases, the number of users that obtain very low tagger trustworthiness increases.
Consequently, multiplying the veracity of an assertion by the normalized tagger trust-
worthiness of its poster (§3.5) decreases the veracity score of both true and false asser-
tions.

Dishonest users employ Sybil taggers. Figure 9(b) shows the veracity of true and false
assertions when dishonest users employ Sybils. Each dishonest user creates a varying
number of Sybils. The Sybils are connected only to their creator and tag all its asser-
tions as true. As can be seen, the dishonest users gain little benefit by using Sybils in
our setting. Although there are many Sybil taggers for false assertions, most of them
have very low (or 0) tagger trustworthiness and the sum of tagger trustworthiness of
Sybil taggers is most often below the threshold M (Equation 2).
Figure 9(b) also shows that the veracity of true assertions is affected by Sybils to a

larger degree when we use Advogato than when we use MaxTrust. Although Advogato
can successfully suppress the tagger trustworthiness of Sybil taggers, it also decreases
the tagger trustworthiness of honest users. Consequently, some true assertions do not
have enough taggers to pass the threshold M (Equation 2), and they cannot obtain
sufficiently high assertion veracity.
Figure 10(a) shows how veracity is distributed among true and false assertions when

we use MaxTrust. We depict the CDF of the assertion veracity of all 200K assertions.
We observe that 60.6% and 14.3% of true assertions obtain veracity equal to 1 and 0.2,
respectively. Also, 24.3% of true assertions obtain 0 veracity. The true assertions with
c = 0.2 veracity belong to honest users with 0 tagger trustworthiness (Equation 3).
The true assertions with 0 veracity are the ones for which the sum of their taggers’
veracity scores are below M . The number of these incorrectly assessed true assertions
can be reduced by increasing the maximum number of friends that users tag (F ), i.e.,
increasing the adoption of social tagging. Incorrectly assessed assertions can be fur-
ther avoided by designating more trust seeds. Unlike true assertions, most of the false
assertions, 90%, obtain 0 veracity. Only 1.5% of false assertions obtain veracity 1. This
result suggests that FaceTrust’s assertion veracity scoring mechanism is effective, but
not absolutely accurate. Thus, it should not be used to control access to critical re-
sources.
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To compare MaxTrust to Advogato, Figure 10(b) shows how veracity is distributed
among true and false assertions when we use Advogato. In Advogato, we observe that
only 43% of true assertions obtain veracity equal to 1. That is, Advogato can prevent
false assertions from obtaining high veracity, but it also suppresses the veracity of true
assertions.

Dishonest focused colluders. We also evaluate the case in which dishonest users form
a coalition. The dishonest colluders in a group are connected to each other and tag
each other’s assertions, as true. This experiment differs in that it is guaranteed that
each dishonest user has a specified minimum number of dishonest colluders. This cor-
responds to a more focused and coordinated attack. Figure 11(a) depicts the mean
veracity of the assertions posted by the dishonest users as a function of the size of a
coalition.
We observe that the false assertions of colluders can get higher average veracity

than the true assertions only if the coalition size exceeds a relatively high threshold
(30 for MaxTrust). This is due to: a) the increased number of dishonest taggers; and
b) the increased tagger trustworthiness of the colluders. The tagger trustworthiness of
colluders increases because users closer to seeds can get higher tagger trustworthiness
in MaxTrust. If a single colluder in a group is close to a trust seed, all the colluders
in his group, which are connected to him, may get high tagger trustworthiness. As
the number of colluders increases, both sources of increased tag weight become more
prominent and the assertions of colluders get high veracity. We also observe that Ad-
vogato performs substantially worse than MaxTrust; the threshold over which false
assertions acquire higher veracity than true ones is reduced to 15 instead of 30.
The above results reveal a limit of our approach. If a substantial number of collud-

ers coordinates, they can ensure that their assertions have high veracity. Nevertheless,
rational colluders need to expend effort (§2.4), which may discourage them from orches-
trating an attack. Hence, FaceTrust credentials should not be treated as the absolute
truth and they should instead be used as an additional indication of veracity.

Dishonest users employ Sybil assertion posters. We now evaluate our system when
coalitions of dishonest users perform the Sybil assertion poster attack (§2.4). Each
dishonest user creates Sybils to which all the colluders in its coalition connect to. The
Sybil users post assertions and all the colluders tag them as true. At the same time,
dishonest users tag honestly for all other assertions in an attempt to establish high
similarity with honest users. This attack is equivalent to dishonest users who choose
to connect only to other dishonest colluders. As explained in §2.4, this attack results in
the colluders having access to assertions that cannot be voted as false by other honest
users, thus those assertions are expected to have high veracity.
In Figure 11(b), when the number of Sybil assertion posters is small, e.g., 10 for Max-

Trust, we observe that the veracity of false assertions is higher than that of true ones.
Because the number of Sybils is small, MaxTrust does not assign low tagger trustwor-
thiness to them. Consequently, Equation 3 (§3.5) does not mitigate this attack, because
both the colluding dishonest taggers and the Sybil posters have relatively high tagger
trustworthiness. This result reveals another limit of our approach. Nevertheless, Face-
Trust prevents dishonest users from using the assertions of those Sybils in multiple
contexts by imposing a quota (§3.5) on the number of credentials each user can request.
Figure 11(b) also shows that MaxTrust is significantly more resilient to the Sybil

poster attack than Advogato. Unlike MaxTrust, in Advogato false assertions obtain
higher veracity than true ones as long as the attacker employs less than 300 Sybil
assertion posters. Because there is a single seed in Advogato, colluders located near
the seed can pass high tagger trustworthiness to their Sybil users, thus boosting their
false assertions.
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Fig. 11. (a) Mean veracity of assertions posted by dishonest colluders as a function of the coali-
tion size; 80% of users are honest and F = 20; (b) Mean veracity of false assertions posted by
Sybil posters as a function of the number of Sybil assertion posters in the group, when 80% of
users are honest, F = 20, and the group size is 30

When the colluders create many Sybils to overcome the quotas, they have to cope
with the fact that the tagger trustworthiness of the Sybils is reduced. Consequently,
the mean assertion veracity is reduced as shown in Figure 11(b). This result indicates
the importance of multiplying the assertion veracity by the poster’s tagger trustworthi-
ness as described in §3.5. Furthermore, rational dishonest users incur a cost to create
Sybils, e.g., solving CAPTCHAs during Facebook account registration §2.4, which fur-
ther limits their ability to subvert our scheme.

Assertion veracity evaluation conclusions. The above evaluation illustrates that our
assertion veracity scoring technique results in false assertions obtaining substantially
lower veracity than true ones. We show that this holds even under commonly deployed
attack strategies (Sybils and colluders). In addition, we demonstrate the limits of our
approach by explicitly describing elaborate colluding attacks that FaceTrust does not
sufficiently mitigate.

6.2. Facebook Deployment

FaceTrust requires a new form of user input: assertions and tags. In addition, in order
for the veracity scores to correlate positively with the ground truth, it requires trust-
worthy users to tag honestly and similarly. These facts motivate us to ask: Are users
willing to tag their friends’ tags? How often and honestly will they tag? To answer
these questions, we deployed the “Am I Really?” (AIR) Facebook application (§3.1) for
users to post and tag assertions, and advertised it on Facebook. The Facebook adver-
tisements resulted in approximately 100 installations of AIR.
We collected a data set consisting of 1108 real Facebook users.1 395 of those users

chose to declare that they are friends with at least one AIR user, thus having one
or more neighbors in the AIR social graph. For the rest of this evaluation we pro-
vide statistics concerning those 395 users, because they are the only ones that can
tag friends in AIR. Our data set includes 2410 social connections established between
Sept. 1st, 2009 and Jan. 10, 2010. These connections form several connected compo-
nents, the largest of which includes 182 users. The average number of friends a user
has in that largest component is 3.8 and the diameter of the component is 4. Our live
system computes tagger trustworthiness scores using MaxTrust. We employ 10 trust

1Duke University IRB Protocol 3015.
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seeds, set Tmax = 10 and assume that 90% of the network consists of honest users. We
incorporate user-defined similarity (§3.3.1) in the computation of tagging similarity,
using b = 5. We again set c = 0.2 (§3.5). On average, friends have Nt (as defined in
§3.3.1) equal to 5.2, 10.4, 3.7. and 2.8 for type t of age, location, profession, and gender,
respectively.
To protect user privacy, we anonymize all Facebook and AIR-specific identifiers and

exclude the assertions that include personally identifiable information prior to data
processing. In addition, the application informs its users that their personal data will
not be published.
Figure 12(a) shows the complementary cumulative distribution (CCDF) of users as

a function of the number of tags they post. We observe that even in this small social
graph, more than half of the users have tagged at least 8, 6, 4, and 1 time for assertions
of type age, profession, location and gender, respectively. We also find that users tag
on average 14.4, 10.4, 7.5, and 4.6 times for assertions of type age, profession, location,
and gender, respectively. We believe that when the system is widely adopted, users
will have on average many more friends to tag. Thus, we speculate that the number
of assertions users tag is likely to exceed 10, which is the number needed to obtain
accurate tagger trustworthiness (Figure 7(b) in §6.1.2).
Figure 12(b) shows the CCDF for the number of assertions users post for each as-

sertion type. More than one quarter of the 395 users have posted at least 8, 6, 4 and 2
assertions of type age, profession, location and gender, respectively. We also find that
users post on average 5.6, 3.6, 2.6, and 0.9 assertions of types age, profession, location,
and gender. This is indicative of the fact that users use this application as intended
and do not feel uncomfortable reporting such information to their friends and Face-
Trust. We also observe that users tend to post more assertions that concern their age
or profession than their location. Users are probably less motivated to ask others for
their opinion on their location.
We now examine the AIR profiles of 10 users that were randomly selected out of

the 395 users. For these 10 users we used out-of-band means (in-person questions and
close examination of their profiles) to determine the ground truth for their age, gender,
location and profession assertions. We collect a total of 50, 50, 50 and 20 age, profession,
location and gender assertions, respectively. These include 14 false age assertions, 21
false profession assertions, 19 false location assertions, and 10 false gender assertions.
Each of these assertions were tagged ∼ 6 times on average by distinct users.
Figure 12(c) shows the mean veracity per type of the true and false assertions with

and without attackers in the system. Per each type, the first column depicts the mean
assertion veracity of true assertions. The second column depicts the mean veracity of
false assertions in the absence of attackers. The third column shows the mean veracity
of false assertions when we inject 20 dishonest users in AIR’s social graph. The aim
is to emulate an attack during which the injected dishonest users collude with the
10 randomly selected users to make their false assertions appear true. The injected
dishonest users do not represent real Facebook accounts. They are connected to the 10
randomly selected honest users, such that each of these real users is AIR-friends with
two distinct dishonest users. That is, we start by connecting the first honest user with
two randomly selected dishonest users. We then remove those two dishonest users
from the pool of users to connect to and repeat the process with the next honest user.
The dishonest users tag the false assertions of the 10 real users as true. In an attempt
to increase its similarity with honest users, a dishonest user launches the camouflage
attack by tagging all the other assertions as true, if their prior veracity of the assertion
was greater than 0.5 and false otherwise.
In Figure 12(c), we see that the computed veracity for true and false assertions in the

absence of attackers correlates very well with the ground truth. This result indicates
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Fig. 12. a) CCDF of the number of ”Am I Really?” users as a function of the number of tags per
user for each assertion type; b) CCDF of the number of users as a function of the number of
posted assertions per user for each assertion type; c) veracity per type of true and false asser-
tions in FaceTrust’s real-world deployment with and without attackers; The error bars denote
95% confidence intervals.

that users tend to tag correctly. We observe that users may make some mistakes in
assessing each other’s age, but when the truth for an assertion is straightforward,
such as for gender, the veracity of the assertion is high.
As can be seen in the third column for each type, the injected dishonest users have

boosted the veracity of false assertions. This is mainly because the AIR social graph
is small, with each honest user having less than 4 honest friends on average. Two
attackers per user caused the false assertions’ veracity to increase substantially. How-
ever, there is still a distinguishable gap between the average veracity of true and false
assertions, indicating the resilience of FaceTrust’s assertion veracity scoring mecha-
nism.

6.2.1. Deployment conclusions. Our Facebook deployment results indicate that users
tag sufficiently frequently for the tagger trustworthiness measure to be effective. Im-
portantly, our results also indicate that benign users tag mostly correctly. This demon-
strates the efficacy of relying on users to certify each other’s identity attributes.

6.3. Computational Efficiency

We have benchmarked the computational overhead to derive MaxTrust’s max-flow-
based tagger trustworthiness, using a 3.4GHz P4 machine with 2GB memory running
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Debian 2.6.25. We repeated the measurement 5 times. The mean computation time
to obtain the tagger trustworthiness using our max-flow-based method for all 200K
users and for Tmax = 100 is 629 sec. The computation time is almost independent of the
number of trust seeds. The requiredmemory is∼ 550MB (∼ 500MB for graph structure
data, ∼ 50MB for computation).
We observe that the computation cost of our heuristic for sub-million node graphs

is not excessive. Using parallel computation techniques, e.g., MapReduce [Dean and
Ghemawat 2004], as used for the computation of PageRank in Google’s datacenters
and by BotGraph [Zhao et al. 2009], we expect that this computation could scale to
multi-million user social networks.
On the other hand, solving the optimal max-flow using the Edmonds-Karp algorithm

is computationally prohibitive. For the same 200K-user social graph, under the same
machine configuration, Edmonds-Karp requires approximately 1 million sec.

7. RELATED WORK

Overview: Prior work has employed trust in social networks to improve system secu-
rity [Pujol and Delgado 2002; Sovran et al. 2008; Ramachandran and Feamster 2008;
Lesniewski-Laas and Kaashoek 2010; Yardi et al. 2008; Tran et al. 2009; Danezis and
Mittal 2009; Post et al. 2011]. FaceTrust’s main novelty lies in employing OSNs to pro-
vide lightweight, flexible, and relaxed identity attribute credentials. In addition, Face-
Trust improves upon a max-flow-based trust inference method [Levien 2003] making
it scalable with the number of trust seeds.
Social web of trust: The goal of FaceTrust is more related to the PGP Web of Trust
(WoT) [Zimmerman 1995; Stallings 1995]. Like the PGP WoT, FaceTrust aims to
circumvent the expensive and often monopolized Certificate Authorities to provide
lightweight credentials. Unlike the PGP WoT, FaceTrust uses the intuitive OSN in-
terface, and employs social tagging rather than key-signing to derive trustworthiness.
Furthermore, FaceTrust is easily extensible, and is not limited to certifying only public
keys. Users can tag each other regarding multiple types of identity assertions, and the
set of assertions can be extended by simply adding fields into a user’s profile.
Birthday-paradox-based trust inference: SybilLimit [Yu et al. 2008] also exploits
the fact that although attackers can create multiple Sybils, they are limited in their
ability to create and sustain social acquaintances. SybilLimit performs special random
walks of O(log |V |) length (called random routes) starting from trusted verifier nodes
and a suspect node to determine whether the suspect is a Sybil. In a fast-mixing so-
cial graph, the last edge traversed by the random walk is drawn from the stationary
distribution of the graph. Following from the generalized Birthday Paradox, the last
edges of Θ(

√

|E|) random walks from the verifier nodes and from the honest nodes
intersect with high probability. The opposite holds if the suspect resides in a region of
Sybil attackers connected with a disproportionally small number of edges to the honest
node region. In this case, the network has a higher mixing time and the last edges of
random walks from the suspects are not drawn from the stationary distribution.
FaceTrust could employ SybilLimit instead of MaxTrust as follows. For each level of

trust 0 ≤ w ≤ Tmax we can prune the tagging similarity graph such that it includes
only edges that denote greater than or equal to w similarity. We subsequently run
SybilLimit for each user in the graph and for each level of trust and use as verifiers
the trust seeds. The users (suspects) that are accepted for at most a trust level w are
considered to have tagger credibility w. The reason we do not employ SybilLimit is
that its computation cost would be O(

√

|E|Tmax|V | log |V |), which is approximately
√

|E| times more expensive than MaxTrust’s under our sparse social graph setting.
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Max-flow-based trust inference: Scalar max-flow-based trust inference computes
the maximum flow over a trust graph from a trusted node (source) to a suspect node
(sink) in order to determine whether the suspect is trustworthy. Levien et al. [Levien
and Aiken 1997] and Reiter et al. [Reiter and Stubblebine 1999] proposed scalar max-
flow trust inference schemes for public key certification schemes such as the PGPWoT.
They have also proved the resilience of maximum-flow-based trust metrics to node
and edge attacks. In addition, Cheng et al. [Cheng and Friedman 2005] have shown
that a node cannot increase its trust by creating Sybils, and needs to establish social
edgeswith multiple honest nodes in order to attain the same trustworthiness as honest
nodes.
We do not employ scalar trust inference because it is not sum-Sybilproof (§3.3.2).

That is, they do not prevent an attacker from creating Sybils that obtain the same
trust value as their creator. Thus, an attacker can increase the sum of the trust of the
users he controls simply by adding Sybils.
Advogato [Levien 2003] and Sumup [Tran et al. 2009] use group max-flow-based

trust inference toward a Sybil-resilient trust metric and a voter collection system, re-
spectively. Group max-flow trust inference bounds the sum of the trust values of Sybils
by the edge capacity of their creators. Sumup computes multiple-source maximum flow
from the users to a single trusted vote collector with a DFS-based heuristic to decide
which users can vote at least once. Although, Sumup’s DFS-based max-flow heuristic
has comparable computation cost with MaxTrust’s, it is designed to collect votes from
a small fraction of users (≤ 20%) in a social network. Thus, in our setting it can accept
only a small fraction of honest users as trustworthy.
Bazzar [Post et al. 2011] also uses a max-flow-based technique to access the likely

trustworthiness of users in online marketplaces. It uses the network formed from prior
successful transactions as an input of the max-flow-based technique, thereby limiting
trustworthiness manifulation. To reduce the computation cost, Bazzar uses a layered
graph concept called multi-graph, which contains a series of networks, where each
subsequent network is a subgraph of the previous containing only those links with
higher flows.
Eigenvector-based trust inference: In EigenTrust [Kamvar et al. 2003] and
TrustRank [Gyöngyi et al. 2004] the node trust values are the left principal eigenvector
e of the matrix c, where cij is the normalized pairwise trust between nodes i and j. Both
schemes seed the computation of the eigenvector at a few selected trusted nodes. This
computation expresses how trust flows among users through directed weighted edges.
For a fast-mixing social graph TrustRank can be computed in O(|V |log|V |) time and
this value approximates the stationary distribution of the graph for users that reside
in the honest fast-mixing region of the graph. Although, for sparse and small-world
social graphs the computation cost of eigenvector-based trust inference is comparable
to MaxTrust’s, we do not employ it because Cheng et al. [Cheng and Friedman 2006]
have shown that it is substantially manipulable under Sybil strategies.
Bayesian Sybil inference: Similar to MaxTrust, SybilInfer [Danezis and Mittal
2009] takes advantage of the fact that clusters of Sybils are connected to the honest re-
gions of social networks with a disproportionally small number of edges. Its Bayesian
Sybil detection method derives the probability of a suspect node being a Sybil, which
is an explicitly actionable measure of trustworthiness. However, its computation cost
is excessive for our setting (O(|V |2 log |V |).
FaceTrust can also employ non-social-network-based Sybil defense techniques such

as the ones proposed in [Zhao et al. 2009; Yu et al. 2009] to further limit the influence
of Sybils in the system.
These techniques, can be used in combination with FaceTrust to build more trust-

worthy and Sybil-resilient email, recommendation and online review systems. Bot-
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Graph [Zhao et al. 2009] detects botnet spamming attacks that target Web email
providers. BotGraph detects botnets by constructing large user-user graphs for links
between email-exchanging users and looking for tightly connected subgraph compo-
nents. As stated in [Zhao et al. 2009] this technique is applicable in social graphs.

8. CONCLUSION

We presented FaceTrust, a system that leverages OSNs to provide lightweight, flexi-
ble, relaxed and anonymous credentials. These credentials help users and services to
assess the veracity of assertions made by online users. With FaceTrust, OSN users
post identity assertions such as “Am I really 18 years old?” on their OSN profiles, and
their friends explicitly tag these assertions as true or false. An OSN provider ana-
lyzes the social graph and the user tags to assess how credible these assertions are,
and issues credentials annotated by veracity scores. Our analysis, real-world deploy-
ment and simulation-based evaluation, suggest that FaceTrust is effective in obtaining
credible and otherwise unavailable identity information for online personas.
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