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Abstract
Understanding the dynamics of human contact and movement patterns in a physical
space is crucial to better understand the spread of contagious diseases, information
transfer from person to person, social behavior and influence. To this end, in the
last 15 years temporal networks known as human proximity networks have been
captured in different settings and have been extensively studied. These networks
are characterized by similar structural and dynamical properties regardless of the
setting. Many of these properties are well understood and can be reproduced with
simple models. However, when we examine complex social group dynamics, such as
the observed recurrent formation of groups (components) that consists of the same
people, simple descriptions have been elusive.

In this thesis, we elucidate the emergence of the observed properties of real
human proximity networks and their complex group dynamics through geometric
approaches. In the first part of this thesis, we explore the human movement patterns
responsible for the emergence of the main properties of the networks but in particular
the formation of recurrent components. We propose a model of mobile agents,
where agents reside in a hidden metric similarity space. In this space the distances
between the agents abstract their similarities and these similarities act as forces
that direct their motion towards each other in the physical space, and determine
the duration of their interactions. We show that this force-directed motion model
reproduces the main properties of human proximity networks and simultaneously
forms the elusive recurrent components observed in reality. Interestingly, results
with this model point to a connection with the popular S1 model of traditional
(non-mobile) complex networks, which is isomorphic to random hyperbolic graphs.
In the second part of this thesis, we explore this connection and propose a minimal
latent space model which reproduces all the main properties of human proximity
networks as well as the formation of recurrent components. The simplicity of the
model facilitates its mathematical analysis, allowing us to prove three important
properties of the generated networks. These findings lead to the third part of this
thesis, where we address the problem of mapping real human proximity networks into
hyperbolic spaces. We show that this embedding process can be done using methods
developed for traditional complex networks based on the S1 model. We justify the
compatibility theoretically and experimentally. We produce hyperbolic maps of six
different real systems, which can be used to identify communities, facilitate greedy
routing, and predict future links with significant precision. Further, we show that
the time when nodes become infected are positively correlated with their hyperbolic
distance from the source of the infection in epidemic spreading simulations on the
temporal network.
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6.1 Connection probability in the time-aggregated network versus Fermi-
Dirac connection probability. The results correspond to the synthetic
counterparts of the hospital, high school and Friends & Family,
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6.3 Inference accuracy vs. aggregation interval. The results correspond
to a synthetic counterpart of the primary school constructed using
the dynamic-S1 model. (a) Average difference between the inferred
and real latent degrees as a function of the aggregation interval τ ,
Dκ(τ) = ∑N

i=1 |κiinferred − κireal|/N , where κiinferred (κireal) is the inferred
(real) latent degree of node i. (b) Same as in (a) but for the
average difference between the inferred and real angular coordinates,
Dθ(τ) = ∑N

i=1 |θiinferred−θireal|/N . Before computingDθ(τ), the inferred
angles are globally shifted such that the sum of the squared distances
between real and inferred angles is minimized (to this end, we apply a
Procrustean rotation [89], see Appendix C.8 for details). (c) Density of
the time-aggregated network as a function of τ , d(τ) = 2L/[N(N−1)],
where L is the number of links in the network. The vertical dashed lines
indicate the interval 500 ≤ τ ≤ 10000. In this interval, Dκ(τ) < 0.2,
Dθ(τ) < 0.2, and 0.06 < d(τ) < 0.33. . . . . . . . . . . . . . . . . . 68

6.4 Hyperbolic embeddings of human proximity networks. (a-d) Hyper-
bolic maps of the time-aggregated networks of the hospital, primary
school, high school and office building. In each case we consider the
time-aggregated network formed over the full observation duration
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In the office building, the nodes are employees working in different
departments such as scientific direction (DISQ), chronic diseases and
traumatisms (DMCT), department of health and environment (DSE),
human resources (SRH), and logistics (SFLE). (e-h) Corresponding
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6.5 Success ratio ps of H2H-GR and H2H-RR as a function of the effective
distance χ̃ between source-destination pairs. The top row corresponds
to the results of the hospital, primary school and conference in
Table 6.2, while the bottom row to the results of their synthetic
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model
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space in the H2 model
χij Is the effective distance between two nodes. Propor-

tional to the angular distance between the nodes over
the product of their hidden degrees

χ̃ij Denotes the effective distance between two nodes in
the time-aggregated network

ai Is the activation probability of a node in the FDM
model

µ1 Is the exponential decay of the bonding forces in the
FDM model

µ2 Is the exponential decay of the attractive forces in the
FDM model

F0 Is the magnitude of the attractive forces in the FDM
model

v Is the magnitude of the random displacement in the
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Chapter 1

Introduction
Human proximity networks are temporal networks representing the close-range
proximity among humans in a physical space. They have been extensively studied in
the past 15 years as they are critical for understanding the transmission of airborne
diseases, the efficiency of information dissemination, social behavior, and influence [1,
9, 16, 24, 41, 42, 44, 48]. To this end, human proximity networks have been captured
in different environments over days, weeks or months [1, 16, 24, 36, 45, 64, 102, 107].
Such time-varying networks are represented as a series of static graph snapshots.
Each snapshot corresponds to an observation interval or time slot, which typically
spans a few seconds to several minutes depending on the devices used to collect
the data. The nodes in each snapshot are people and an edge between two nodes
signifies that they had been within proximity range during the corresponding slot.
At the finest resolution, each slot spans 20 seconds and the proximity range is 1.5
m. Such networks have been captured by the SocioPatterns collaboration [97] in
closed settings, such as hospitals, schools, scientific conferences and workplaces, and
correspond to face-to-face interactions [36, 45, 64, 102, 107]. At a coarser resolution,
each snapshot spans several minutes and proximity range can be up to 10 m or more.
Such networks have been captured in university dormitories, residential communities
and university campuses [1, 24, 39].

Irrespective of the context, measurement period and measurement method,
different human proximity networks have been shown to exhibit similar structural
and dynamical properties [9, 101]. Examples of such properties include the broad
distributions of contact and intercontact durations, and properties of the time-
aggregated network such as weight and strength distributions [16, 44, 48, 101].
Interestingly, these and other properties of human proximity systems can be well
reproduced by simple generative models [99, 100, 103, 112]. For example, in a
model of mobile agents known as the attractiveness model [99, 100], modeling
the motion patterns of individuals as random walks in a two dimensional space,
is sufficient to reproduce these and many other properties of human proximity
networks. However, in recent years, more complex characteristics of these networks
have been investigated, which originate from motion patterns far from random [94].
Specifically, the recurrent formation of groups that consists of the same people,
in other terms, connected components that appear recurrently throughout the
network snapshots. These recurrent components are fundamental structures of
human proximity networks that are crucial for tasks such as community detection
and predicting future behavior [40, 94]. Thus, in this thesis we address the following
research questions: i) Can we model human proximity networks with latent geometry
approaches?; ii) Can the similarities abstracted in the latent metric space be the
driving forces that form recurrent components that previous models in the literature
do not capture?; iii) Is the underlying geometry of human proximity networks
hyperbolic, like in the case of traditional (non-mobile) complex networks?, iv) How
can we embed real human proximity networks into their latent geometry? and v)
Can the embeddings be efficiently used for applications such as community detection,

1



1. Introduction

information dissemination, link prediction and epidemic spreading?
In the first part of this thesis, we study recurrent components and propose a

model of mobile agents capable of forming them as well as reproducing other main
properties of human proximity networks. The results obtained with this model
lead to the second part of this thesis, where we propose a minimal latent geometry
model that forgoes the motion component, yet it is capable of reproducing the same
properties as the first model. We also demonstrate that the models can be used to
simulate epidemic spreading on synthetic human proximity networks realistically.
Finally, in the last part of this thesis, based on our latent geometry model, we solve
the inverse problem of mapping real human proximity networks into their latent
geometry and explore several applications.

1.1 Contributions

In this thesis we make several contributions towards understanding the emergence of
the structural and dynamical properties observed in real human proximity networks,
in particular the elusive recurrent formation of groups that consists of the same
people. In this regard, our contributions are the following:

• In Chapter 4, we propose a model of mobile agents where the social dynamics
responsible for the formation of recurrent components in human proximity
networks, find a natural explanation in the assumption that the agents of the
temporal network reside in a hidden similarity space. Distances between the
agents in this space act as similarity forces directing their motion towards other
agents in the physical space and determining the duration of their interactions.
By contrast, if such forces are ignored in the motion of the agents recurrent
components do not form, although other main properties of such networks
can still be reproduced. This work has been published in Physical Review
Letters [87].

Interestingly, without enforcing it into the model, the per-snapshot connection
probability resembles qualitatively the connection probability of the known S1

of traditional (non-mobile) complex networks, which is isomorphic to random
hyperbolic graphs [55, 56]. Our next contribution originates from this result.

• In Chapter 5, we propose a minimal latent space model where the main observed
properties of human proximity networks, including the elusive recurrent
components, emerge naturally and simultaneously. This model does not model
node mobility directly, but captures the connectivity in each snapshot–each
snapshot in the model is a realization of the S1 model. By forgoing the motion
component the model facilitates mathematical analysis, allowing us to prove
the contact, inter-contact and weight distributions. Further, we show that
paradigmatic epidemic and rumor spreading processes perform similarly in
real and modeled networks. This work has been published in Physical Review
E [78].

This model also simplifies our final research question: Can we embed real human
proximity networks into hyperbolic spaces and obtain meaningful results?
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Contributions

• In Chapter 6, we propose a methodology to embed real human proximity
networks into hyperbolic spaces according to our proposed latent space
model. Network snapshots are often very sparse in human proximity networks,
consisting of a small number of interacting (i.e., non-zero degree) nodes. Yet, we
show that the time-aggregated representation of such systems over sufficiently
large periods can be meaningfully embedded into the hyperbolic space, using
methods developed for traditional (non-mobile) complex networks. We justify
this compatibility theoretically and validate it experimentally. We produce
hyperbolic maps of six different real systems, and show that the maps can
be used to identify communities, facilitate efficient greedy routing on the
temporal network, and predict future links with significant precision. Further,
we show that epidemic arrival times are positively correlated with the hyperbolic
distance from the infection sources in the maps. This work has been accepted
in Scientific Reports. The pre-print is available in [88].
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Chapter 2

Methodology
In this thesis we study human proximity networks through geometric approaches.
We propose generative models where a latent similarity space is the main mechanism
that explains the observed properties of this networks, including the formation
of recurrent components that previous models from the literature do not capture.
Further, we develop a geometric framework for the embedding of real human proximity
networks into their latent geometry based on one of the generative models we propose,
which allows the efficient use of the embeddings for several important applications:
community detection, greedy routing, link prediction and the prediction of epidemic
arrival times. Here we provide an overview of the methodology followed to achieve
these goals.

2.1 Data

We started by analyzing real human proximity networks from two popular sources:
SocioPatterns [97] and the MIT Human Dynamics Lab [85]. The networks from
SocioPatterns that we consider, capture the face-to-face interactions among people
in closed settings such as a Hospital [107], a Primary School [102], a High School [64],
a Scientific Conference [45] and an Office Building [35]. All the networks have
a proximity range among individuals of up to ∼ 1.5m and time slot durations
of 20 seconds. From the MIT Human Dynamics Lab, we consider the Friends &
Family network [1], corresponding to a residential community; and the MIT Social
Evolution network [24], corresponding to a university dormitory. In these networks
the proximity range among individuals is up to ∼ 10m and time slot durations of
∼ 5 minutes. For further details see Section 3.1.

Then, we investigated the following properties of the networks: contact and
inter-contact duration distributions, weight and strength distributions, group size
and group interaction duration distributions, and the distribution of the shortest
time-respecting paths. We observed that these properties are similar in all the
networks, regardless of the setting or the devices used to collect the data, as reported
in the literature [101]. Inspired by the results of Sune, et. al. [94], we also studied
group dynamics in the networks. We used the Disjoint Set Union algorithm [30] to
find the connected components formed in each snapshot of the networks. We observed
that connected components formed by the exact same nodes appear recurrently and
abundantly through out the network snapshots in all real networks considered. We
did the same with synthetic networks generated with a popular model of human
proximity networks, known as the attractiveness model [99, 100]. In these networks
recurrent components are almost non-existent because the social dynamics responsible
for their formation is far from random [94].

5



2. Methodology

2.2 Modeling Approach

In the first and second parts of this thesis we give answer to the research question
of whether we can model human proximity networks with geometric approaches
and if the assumption of a hidden similarity space underlying the network could be
the main mechanism from which recurrent components emerge. Specifically, in the
first part of the thesis, we propose a model of mobile agents where the distances
between the agents in a latent similarity space act as similarity forces dictating their
motion in the physical space as well as the duration of their interactions. This model
is called force-directed motion (FDM) model and draws inspiration from Langevin
dynamics, a known approach from Physics used to model the dynamics of molecular
systems. Each agent moves towards other agents according to the summation of the
similarity forces exerted on the agent by the other agents but the agent’s motion is
also affected by a random force accounting omitted degrees of freedom. The intuitive
idea behind this motion hypothesis is that in reality, we do not interact with random
people but with people that are similar to us. However, human interactions are not
deterministic and can also occur randomly, hence the introduction of random forces in
the motion akin to Langevin dynamics. We validated the model comparing properties
of real human proximity networks with the properties of their synthetic counterparts
generated with the FDM, including the formation of recurrent components. We
also simulated epidemic spreading in real networks and their synthetic counterparts
using a known compartmental model known as the Susceptible Infected Susceptible
(SIS) model [46]. In all cases we observe similar properties and epidemic spreading
behavior between the real networks and their synthetic counterparts.

For the second part of the thesis, we observed that the per-snapshot connection
probability in synthetic networks generated with the FDM qualitatively resembles
the Fermi-Dirac connection probability of a popular latent space model for traditional
(non-mobile) complex networks known as the S1 model [55, 95], although this is
not enforced into the model. This is a quite interesting observation because the
S1 model is equivalent to random hyperbolic graphs or the H2 model [55]. Thus,
in the second part of the thesis we give affirmative answer to the question “Is the
underlying geometry of human proximity networks hyperbolic, like in the case of
traditional (non-mobile) complex networks?”. We developed a minimal latent space
model named dynamic-S1 that forgoes the motion component in favor of simplicity.
The model assumes that each network snapshot of a human proximity network is a
realization of the S1 model. As with the FDM, we validated the model comparing
properties of real networks with properties of their synthetic counterparts generated
with the dynamic-S1, as well as diffusion process behavior with the SIS epidemic
spreading model and a rumor spreading model known as DK model [22]. Further,
we used mathematical analysis to prove that the contact, inter-contact and weight
distributions in the model are power laws with exponents 2 + T , 2− T and 1 + T ,
respectively.

2.3 Hyperbolic embedding method

Given the results obtained with the dynamic-S1 model, in the last part of the thesis
we are interested in embedding real human proximity networks into hyperbolic
spaces. We answer our two final research questions: We showed that we can embed
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real human proximity networks into hyperbolic spaces by embedding their time-
aggregated representation using methods developed for the S1/H2 models, and that
the resulting embeddings can be efficiently used for a variety of applications.

First we showed that the connection probability of the time-aggregated networks
in the dynamic-S1 model is similar to the Fermi-Dirac connection probability in
the S1 model. Then we validated this experimentally, using a state-of-the-art
embedding method known as Mercator [32]. We showed that the quality of the
inferred embeddings obtained with the original version of the method is quantitatively
similar to the inferred embeddings obtained with a modified version adapted to the
time-aggregated connection probability of the dynamic-S1 model.

Finally, we visualized the hyperbolic maps of six different real networks and
showed that these maps can be used to visually detect communities. We also
implemented a simple greedy routing algorithm to forward packets between pairs of
nodes using their inferred hyperbolic distances and showed that high success ratios
can be achieved (close to 100% for nodes at smaller hyperbolic distances). We also
showed that whether two nodes will interact in a day or not can be predicted with
significant precision if we know their hyperbolic distance inferred from a previous
day. Regarding epidemic spreading, we also showed that the time slot when a node
becomes infected in Susceptible Infected (SI) simulations is significantly correlated
with the inferred hyperbolic distance between the node and the source of the infection.
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Chapter 3

Related Work
3.1 Real human proximity networks
In the literature, the most widely studied real human proximity networks are from
SocioPatterns [97] and from the MIT Human Dynamics Lab [85]. The SocioPatterns
data correspond to human proximity networks in diverse settings such as: a Hospital
ward in Lyon [107]; a Primary School in Lyon [102]; a High School in Marseilles [64];
a scientific Conference (Hypertext 2009) in Turin [45]; and an office building in
Saint Maurice [36]. The data were collected through the use of Radio-Frequency
Identification (RFID) badges worn by individuals. Interactions were detected only if
the badges were within 1-1.5 meters in front of each other and exchanged at least
1 radio packet in a 20 seconds interval. Therefore each time slot in the data has
duration 20 seconds and corresponds to a network snapshot, whereas the proximity
range implies face-to-face interaction. The data from the MIT Human Dynamics
Lab correspond to human proximity networks in settings such as: a residential
community [1], a university campus [26] and a university dormitory [62]. The
data were collected with the Bluetooth capabilities of mobile phones carried by the
participants. The phones detect the proximity of other phones within a radius of
∼ 10 meters in all directions, including different floors. Thus proximity in these
networks does not imply face-to-face interaction. The resolution of these datasets is
∼ 5 minutes, which is the frequency by which the phones emitted a Bluetooth signal
to be detected by other phones nearby.

Below we describe each real network considered in this thesis. Starting with
face-to-face interaction networks of SocioPatterns.

(i) Hospital. The data were collected during a period of 5 days (December 6-10,
2010) and involve N = 75 nodes (29 patients and 46 health-care workers) in a
hospital ward. There are two working shifts, a morning-afternoon shift and
an afternoon-night shift. Health-care workers that are present in one shift
are usually not present in the other shift. Each day corresponds to a cycle of
recorded activity beginning at the earliest recorded interaction and ending at
the last interaction recorded in the day. There are 43-46 nodes present and
2177-3889 time slots in each activity cycle. The network has a total number
of 17376 time slots, including the time slots during the periods of inactivity
between different days.

(ii) Primary School. The data were collected during a period of 2 days (October
1st, 2nd, 2009) and involve N = 242 nodes (232 children and 10 teachers) in a
primary school. Each day corresponds to a cycle of recorded activity during
working hours from 8:30am to 4:30pm [102]. Cycle 1 has duration of 1555 slots
and consists of 238 nodes, while cycle 2 has duration of 1545 slots and consists
of 236 nodes. The network has a total number of 5846 time slots, including
the time slots during the periods of inactivity between different days.
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(iii) High School. The data were collected during a period of 5 days (December
2-6, 2013) and involve N = 327 nodes (students) in a high school. Each day
corresponds to a cycle of recorded activity beginning at the earliest recorded
interaction and ending at the latest recorded interaction during working hours.
Activity cycle 1 has duration 899 time slots, while each of the activity cycles
2-5 has duration 1619 time slots. There are 295-312 nodes present in each
activity cycle. The network has a total of 18179 time slots, including the time
slots during the periods of inactivity between different days.

(iv) Conference. The data were collected during a period of 2.5 days (June 29th to
July 1st, 2009) and involve N = 113 nodes (participants) in a conference. Each
day corresponds to a cycle of recorded activity beginning at the earliest and
ending at the latest recorded interaction during the hours of the conference.
Activity cycles 1, 2, 3 have durations 2874, 2210, 1946 time slots, respectively.
There are 97-102 nodes present in each activity cycle. The network has a total
of 10618 time slots, including the time slots during the periods of inactivity
between different days.

(v) Office Building. The data were collected during a period of ∼ 2 weeks in 2015
and involve N = 217 nodes (employees) in an office building. Including only
working days there are 10 days. Each day corresponds to a cycle of recorded
activity beginning at the earliest recorded interaction and ending at the latest
recorded interaction during working hours. There are 209-215 nodes present
and 1973-2159 time slots in each activity cycle. The network has a total number
of 49678 time slots, including the time slots during the periods of inactivity
between different days and the weekend period.
The following human proximity networks are from the MIT Human Dynamics
Lab.

(vi) MIT Social Evolution. The data were collected during a period of 8 months
(October 2008 - May 2009) and involve N = 74 nodes (students) in a dormitory
of a major university in the United States. Each day in this network corresponds
to interactions recorded during all the day. The network has a total of 60905
time slots.

(vii) Friends & Family. The data were collected during a period of 8 months
(October 2010 - May 2011) and involve N = 131 nodes (residents) in a
community adjacent to a major university in the United States. Each day
in this network corresponds to interactions recorded during all the day. The
network has a total of 57961 time slots.

3.2 Properties of human proximity networks
The main properties of human proximity networks include properties measured on
the temporal network itself but also on its time-aggregated representation. The
time-aggregated network consists of the aggregation of network snapshots into a
static weighted network. In this network two nodes are connected if they were within
proximity in at least one network snapshot and the weight of the edge is the total
number of snapshots where the nodes remained within proximity [40].
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The main properties of human proximity networks can be classified into three
categories: the individual or microscopic properties, the group or mesoscopic
properties and the collective or macroscopic properties [100].

Here we describe the properties that we consider in this thesis, which have also
been considered in previous related works [99, 100, 101]).

• Microscopic

(a) Distribution of contact durations. This is the distribution of the time
duration (in number of time slots) that two nodes remain in contact
(interact).

(b) Distribution of intercontact durations. This is the distribution of time (in
number of time slots) that elapses between the last time that a pair of
nodes interacted till the time that the same pair of nodes interacts again.

(c) Weight distribution. The weight distribution is the distribution of the
edge weights of the time-aggregated network.

(d) Strength distribution. This is the distribution of node strengths in the
time-aggregated network. The strength of a node is the sum of the weights
of all edges attached to the node.

(e) Average node strength as a function of node degree. From the time-
aggregated network of contacts we also compute the degree of each node
(sum of edges attached to the node) and for each degree we compute the
average strength among nodes with that specific degree.

• Mesoscopic

(f) Distribution of component sizes. This is the distribution of the number of
nodes in the connected components formed throughout the observation
time, including components of size 2.

(g) Average total interaction duration of a group as a function of its size.
The total interaction duration of a group of nodes is the total number of
time slots throughout the observation time where the exact same group
of nodes formed a connected component. For each group size we compute
the average of this duration among groups with that specific size.

• Macroscopic

(h) Distribution of shortest time-respecting paths. Consider three nodes i, k
and j, where i and k interact at slot t and k and j interact at slot t′ > t.
In this example, the time-respecting path between i and j is i→ k → j
and has length 2. The shortest time-respecting path between i and j is
the shortest such path throughout the observation time. We consider the
distribution of lengths of the shortest time-respecting paths among all
pairs of nodes [40, 100].
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3.3 Generative models of human proximity
networks

Many generative models for temporal networks have been proposed [40]. However,
generative models that specifically model the main characteristics of human proximity
networks are few [99, 100, 103, 112]. Here we discuss two popular models, which are
minimal, yet are capable of reproducing many of the main properties observed in
real systems.

The agent-based model proposed in [103], models the characteristic distributions
of contact durations, intercontact durations, weight and strength observed in reality.
The main idea of the model is to form groups of interacting agents according to a
simple mechanism, which assumes that the longer an agent is interacting in a group,
the less likely it is to leave it, while the longer an agent is isolated (not interacting)
the less likely it is to form a new group. The model assigns a sociability value ηi
to each agent i = 1, . . . , N , sampled uniformly at random from [0, 1]. Each node i
also has a coordination value ni, which is the current degree of the node and a value
ti, which is the time slot at which ni last changed. The model begins with random
initial conditions and proceeds in a time slotted manner. In each time step t, the
following steps are performed:

1. Chose a random agent i

2. Update the node’s current degree ni as follows:

a) If the node is isolated (ni = 0), the node initiates an interaction with
probability p0(t, ti) = ηi

1+(t−ti)/N with an isolated node j chosen with
probability p0(t, tj). Set ni = nj = 1.

b) If the node is interacting in a group of size n (ni = n), with probability
pn(t, ti) = 1−ηi

1+(t−ti)/N , the node either leaves the group or introduces
another isolated node to the group:

i. With probability λ, the node leaves the group. Set ni = 0, nk = n− 1
for all k nodes remaining in the group.

ii. With probability 1− λ, the node introduces another isolated node
j into the group, chosen with probability p0(t, tj). Set nj = n + 1,
nk = n+ 1 for all k nodes in the group.

c) With probability 1− pn(t, ti) (if ni = n) or 1− p0(t, ti) (if ni = 0), node i
does not change its current state (ni).

The mechanism of the model that forms groups (components) favors the most
active (sociable) agents to form groups. However, the agent selected and the group
(or agent) to join are random. Thus, recurrent components do not form as abundantly
as in reality.

The model of mobile agents proposed in [99, 100] is capable of reproducing
all properties described in Section 3.2. The main idea in this model is that the
agents have an intrinsic social attractiveness and they perform random walks in a
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two dimensional space, abstracting a physical location. When an agent is within
proximity of another agent they may stop to interact with each other. Agents have
a higher probability to remain interacting with more attractive agents, while they
are more likely to resume mobility if the agents within proximity are less attractive.
Specifically, the model assigns an attractiveness value si and an activation probability
ai to each agent i = 1, . . . , N , both sampled uniformly at random from [0, 1]. Initially,
the agents are distributed uniformly at random in a closed box of linear size L where
they perform random walks. The agents that are within distance d from each other
are considered as interacting and do not move, while the rest of the agents are
considered as inactive. Time in the model is slotted and each time step t consists of
the following steps:

1. Each inactive agent i becomes active with probability ai.

2. Each interacting agent i escapes from interactions with probability pi(t) =
1−maxj∈Ni(t){sj}, where Ni(t) is the set agents interacting with i at time t.

3. Each active and escaped agent i moves towards a direction φ sampled uniformly
at random from [0, 2π] with a displacement magnitude v.

4. All agents that are within distance d from each other are considered as
interacting and stop moving, while the rest of the agents are set as inactive.

The model assumes d = v = 1 and the size of the box L is used to tune the
resulting properties. A small box produces a denser space where larger groups form
and the average degree in the time-aggregated network is larger. Although simple,
the model reproduces all properties described in section 3.2. However, as it has been
shown in [94], the random motion of the agents cannot reproduce the formation of
recurrent components observed in real systems. This also means that any generative
model where groups are formed by completely random mechanisms will have the
same limitation.

It is then important to develop generative models capable of reproducing the
behavior of the formation of recurrent components because they are fundamental
structures of these networks that are crucial to better understand their dynamics
and have predictive power [40, 94]. In this thesis we propose two generative models
based on latent metric spaces. First, we propose a model of mobile agents where
the distances among them in a latent metric space act as similarity forces that drive
their motion and determine the duration of their interactions. This model offers
new insights into the human behavior responsible for the formation of recurrent
components, based on a known approach from Physics that models molecular
dynamics. Second, we forgo the motion aspect in favor of simplicity and propose a
minimal latent space model, which models the connectivity among the agents in each
snapshot. The model assumes that each snapshot is a realization of a well-known
latent space model for traditional (non-mobile) complex networks. The simplicity of
the model facilitates the implementation of inference methods by using the model
as a base to embed real human proximity networks into their latent geometry. The
realism of the model yields meaningful embeddings that can be efficiently used for
several applications, as shown in the last chapter of this thesis.
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Chapter 4

Similarity forces and
recurrent components in
human face-to-face
interaction networks

This chapter has been published, with some modifications, in “Physical
Review Letters” [87].

Understanding the mechanisms that drive the dynamics of face-to-face interaction
networks is crucial for better analyses of spreading phenomena. In particular,
phenomena that evolve as fast as real-time face-to-face interactions, such as
respiratory transmitted diseases, word-of-mouth information transfer and viruses
in mobile networks [10, 40, 65]. Furthermore, deriving efficient epidemic control
strategies requires an accurate description of fast-evolving contagions [10, 41, 42,
49, 71]. However, a complete understanding of the processes responsible for the
structural and dynamical properties of face-to-face interaction networks has been an
elusive task [8, 40, 94].

Face-to-face interaction networks portray social interactions in closed settings
such as schools, hospitals, offices, etc. A typical representation consists of a series of
network snapshots. Each snapshot corresponds to an observation interval, which can
span from a few seconds to several minutes depending on the devices used to collect
the data [97, 101]. The agents (nodes) in each snapshot are individuals and an edge
between any two agents represents a direct face-to-face interaction.

Analyses of such networks have uncovered universal properties, such as the
heavy-tailed distributions of the interaction duration and time between consecutive
interactions, cf. [45]. Previous results point to the idea of social attractiveness
as a mechanism responsible for these universal properties and for other structural
characteristics of the time-aggregated network of contacts, like its degree, weight and
strength distributions [99, 100, 101]. Specifically, in the attractiveness model [99,
100] agents have an activation probability ai and a global attractiveness value si that
are sampled uniformly at random from [0, 1]. Time is slotted and in each slot each
non-interacting agent i is active with probability ai. Active agents perform random
walks in a closed Euclidean space moving towards a random direction every slot with
a constant velocity (displacement) v. Agents stop moving to interact whenever they
encounter another agent within a threshold distance d. The activation probability
represents the activeness of each agent in the social event. The global attractiveness
of the agents defines an escaping probability from the interactions. For instance,
an agent i that has stopped moving in order to interact with other agents within
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distance d, can resume mobility with probability 1−maxj∈Ni{sj}, where Ni is the
set of agents interacting with i [100]. Therefore, longer interactions occur when an
individual with a high global attractiveness sj is involved.

However, it has been recently revealed that face-to-face interaction networks
exhibit structural and dynamical properties such as community formation, which
originate from motion patterns that are far from random [94]. In a temporal setting,
communities are dynamic, meaning that their structure and size change over time.
A common strategy to track dynamic communities is to construct their evolution
timelines by aggregating connected components of at least three nodes in different
time slots, according to some similarity measure [37, 94]. In other words, the building
blocks of dynamic communities are connected components that appear recurrently.
If we extract the connected components in each time slot of a real face-to-face
interaction network, we can see that many of the exact same components appear
several times throughout the observation period. Indeed, in Figs. 4.1a-c we have
extracted and assigned IDs, in order of appearance, to the unique components found
in three real-world datasets from SocioPatterns [97]: a Hospital, a Primary School and
a High School [64, 102, 107] (see Table 4.1, Section 3.1, Sec. 4.1 and Appendix A.1,
where we also consider a fourth dataset from a conference [45]). The blue lines in
Figs. 4.1a-c represent recurrent components, i.e., components that appeared at least
once in a previous time interval. By contrast, in the attractiveness model we observe
very few recurrent components (Fig. 4.1d, Sec. 4.1 and Appendix A.1), even though
the model accurately reproduces the broad distributions of contact durations and of
times between consecutive contacts (Figs. 4.1f,g). This is because in the model nodes
drift according to their own random trajectories and the probability for a group of
at least three nodes to meet again is vanishing. In other words, components form in
this model purely based on chance.

Dataset N τ n̄ l̄ Cycles µ1 F0 µ2
Hospital 70 4400 7.09 4.7 4 0.8 0.12 0.9

Primary School 242 3100 56.38 40.57 2 0.35 0.2 0.78
High School 327 7375 41.89 25.56 5 1.2 0.11 0.86
Conference 113 7030 4.98 2.96 3 2.65 0.02 3.6

Table 4.1: Analyzed datasets. N is the total number of agents; τ is the total duration of the dataset
in slots of 20 seconds after removing the periods without interactions between consecutive days;
n̄, l̄ are the average numbers of interacting agents and links (interactions) per slot. The activity
cycles correspond to observation periods in different days (see Section 3.1). µ1, F0, µ2 are the FDM
parameters used in the simulated counterpart of each real network (see text).

Here we present a model of mobile agents where their motion is not totally
random, but instead it is also directed by pairwise similarity forces. We show
that this model can capture the most distinctive features of face-to-face interaction
networks including their observed recurrent component patterns. In addition to the
two-dimensional Euclidean space where agents move and interact (an L× L square),
agents in the model also reside in a hidden similarity space, where coordinates
abstract their similarity attributes. Distances between the agents in this space
act as similarity forces directing their motion towards other agents in the physical
space and determining the duration of their interactions. We consider the simplest
metric space as the similarity space, which is a circle of radius R = N/2π where
each agent i = 1, 2, . . . , N is assigned a random angular coordinate θi ∈ [0, 2π].
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Figure 4.1: Recurrent component patterns and distributions of contact durations and of times
between consecutive contacts in three real-world datasets and in simulated networks. (a-c)
Components found in the first activity cycle of the Hospital, Primary School and High School
(6, 8.6 and 5 hours, respectively). (d) Components found in a simulation of the attractiveness
model with the same duration as in (a). (e) Same as (d) but with the FDM (Force-dir. Motion)
model. (f, g) Distribution of contact duration and of time between consecutive contacts in real and
simulated networks. (h) Average number of recurrent components where an agent participates as a
function of its total number of interactions in real and simulated networks. The blue lines in (a-e)
correspond to recurrent components while the black lines to components appearing for the first
time, i.e., to the unique components. The x-axis is binned into 30 minute intervals, while the y-axis
shows the component IDs observed in each bin; all components consist of at least three nodes. The
simulations with the models use the parameters of the Hospital (Table 4.1 and Sec. 4.3). In (f-h)
the results with the models are averages over 10 simulation runs. Results for all activity cycles, the
Conference dataset, and for the simulated counterparts of the rest of the real networks are found in
Secs. 4.1, 4.2 and Appendices A.1, A.2.

Therefore the similarity distance between two agents i, j is sij = R∆θij, where
∆θij = π − |π − |θi − θj|| is the angular distance between the agents. (We also
consider non-uniformly distributed coordinates in Appendix 4.6, obtaining similar
results.)

Time in the model is slotted and at the beginning of each slot agents can be in
one of two states: inactive or interacting. Inactive agents move in the slot only if they
become active, while interacting agents move only if they escape their interactions.
At the beginning of each slot t, each inactive agent i is activated with a preassigned
probability ai. Furthermore, each interacting agent i escapes its interactions with
probability

P e
i (t) = 1− 1

|Ni(t)|
∑

j∈Ni(t)
e−sij/µ1 , (4.1)

where Ni(t) is the set of agents that i is currently interacting with and sij is the
similarity distance between agents i and j. The summands in Eq. (4.1) can be seen
as bonding forces that decrease exponentially with the similarity distance, while
parameter µ1 > 0 is the decay constant controlling the importance of these forces
as the similarity distance increases and allowing us to tune the average contact
duration (Sec. 4.3). The model assumes that the contact duration in number of slots
between two agents i, j is exponentially distributed with rate sij/µ1. The discrete
analogue of this distribution is the geometric distribution with success probability
pij = 1− e−sij/µ1 . Therefore, Eq. (4.1) is the average of pij, j ∈ Ni(t).

Each moving agent i in the slot updates its position (xti, yti) according to the
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following motion equations

xt+1
i = xti +

∑
j∈S(t)

Fij
(xtj − xti)√

(xtj − xti)2 + (ytj − yti)2
+Rx

i ,

yt+1
i = yti +

∑
j∈S(t)

Fij
(ytj − yti)√

(xtj − xti)2 + (ytj − yti)2
+Ry

i ,

(4.2)

(4.3)

where S(t) is the set of all moving and interacting agents in the slot, while Fij is
the magnitude of the attractive force between agents i and j, which also decreases
exponentially with their similarity distance,

Fij = F0e
−sij/µ2 . (4.4)

Parameter F0 ≥ 0 is the force magnitude at the minimum similarity distance, sij = 0,
while µ2 > 0 is the decay constant controlling the importance of the force magnitude
as the similarity distance increases. Therefore, the sums in Eqs. (4.2), (4.3) are
the total attractive forces exerted to agent i by the agents j ∈ S(t) along the x
and y directions of the motion. The random motion components are Rx

i = v cosφi,
Ry
i = v sinφi, where φi is sampled uniformly at random from [0, 2π] and v ≥ 0 is the

magnitude of the random displacement. We can think of Rx
i , R

y
i as accounting for

omitted degrees of freedom, akin to Langevin dynamics [93]. At v = 0 the motion
becomes deterministic, while at F0 = 0 it degenerates to random walks. Once the
moving agents update their positions they either transition to the interacting state if
they are within interaction range d from other non-inactive agents, or to the inactive
state. We call the described model Force-Directed Motion (FDM) model.

To understand how the formation of components depends on F0, µ2, v, we first
consider deterministic motion. In this case, the magnitude of the expected agent
displacement is controlled by F0 and µ2. This magnitude can be kept fixed if, when
F0 decreases, µ2 increases accordingly. As µ2 increases, larger components form that
involve agents at larger similarity distances, until the agents eventually collapse into
a giant component. At the same time, the number of components initially increases
and then decreases, see Fig. 4.2(a). The motion in Eqs. (4.2), (4.3) is deterministic
motion with random noise. This noise decreases the chances for similar—close in
the similarity space—agents to meet, which reduces the size of components. At the
same time, it can either increase (if its magnitude v is sufficiently small) or decrease
(if v is sufficiently large) the number of components (Fig. 4.2(b)).

To tune FDM’s parameters in simulations of real networks we follow the procedure
in Appendix 4.3. In a nutshell, we fix v = d = 1. The number of agents N and time
slots τ are the same as in the real networks (Table 4.1). The activation probability ai
is either ai = 0.5 for every agent i (Primary and High School), or sampled uniformly
at random from [0, 1]. Parameters µ1, F0, µ2 (Table 4.1) and the size of the Euclidean
space L (Sec. 4.3, Table 4.2) are adjusted in order to approximately match the
following quantities between simulated and real networks: (i) the average contact
duration (using µ1); (ii) the average number of recurrent components per interval
of 10 minutes, while ensuring a similar size of the largest component formed (using
F0, µ2); and (iii) the average agent degree in the time-aggregated network (using L).

In Fig. 4.1e we see that the FDM can reproduce a similar pattern of unique
and recurrent components as in the Hospital (Fig. 4.1a), in stark contrast to the
attractiveness model (Fig. 4.1d). Similar results hold for all cycles of activity and for
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Figure 4.2: Formation of components in the FDM. (a) Number of components formed (total and
unique) in deterministic motion (v = 0) for pairs of parameters µ2 (bottom x-axis) and F0 (top
x-axis). (b) Same as (a) but for pairs of F0 and v ≥ 0. In both (a, b) as one parameter increases
the other decreases so that the expected agent displacement per slot is always ≈ d = 1. The insets
show the maximum and average size across all components. In both plots N = 242, in (b) µ2 = 1.
See also Sec. 4.3.
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Figure 4.3: Average percentage of infected agents per time slot (prevalence) of the SIS model
as a function of the infection probability α in real and simulated networks (circles and triangles
respectively), for two recovery probabilities β. In the SIS each agent can be in one of two states,
susceptible or infected. At any time slot an infected agent recovers with probability β and becomes
susceptible again, whereas infected agents infect the susceptible agents with whom they interact,
with probability α. To simulate the SIS process on temporal networks we use the dynamic SIS
implementation of the Network Diffusion Library [90]. See Appendix A.3, for further details.

all considered datasets (Sec. 4.1 and Appendix A.1). In Fig. 4.1h we also see that
the model can capture the correlations between the average number of recurrent
components where an agent participated and the total number of interactions
of the agent (see also Sec. 4.1.3). At the same time, the model reproduces the
broad distributions of contact durations and of times between consecutive contacts
(Figs. 4.1f,g). The model also adequately reproduces a range of other properties of the
considered real networks, including weight distributions, distributions of component
sizes and of shortest time-respecting paths, and group interaction durations (Sec. 4.2
and Appendix A.2). It is then not surprising that the susceptible-infected-susceptible
(SIS) spreading process [51] behaves similarly in real and simulated networks (Fig. 4.3).
Fig. 4.4 shows that agents close in the similarity space tend to stay closer to each
other in the Euclidean space throughout the simulations and interact more often, as
expected.

The exponential form of the attractive force in Eq. (4.4) promotes locality and the
formation of small components, as observed in real data. This is also promoted by
the metric property of the similarity space, i.e., the triangle inequality, which ensures
that if an agent a is similar to an agent b and b is similar to a third agent c, then c
is also similar to a. This means that these agents will tend to gather close to each
other in the Euclidean space forming triangle abc. On the other hand, if similarity
distances do not satisfy the triangle inequality, then agents a and c might be close
to some other agents d and e, forming chain dabce in the network. In other words,
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Figure 4.4: Average Euclidean distance and number of interactions between two agents as a function
of their similarity distance, in simulated counterparts of the Hospital, Primary School and High
School. The inset in (a) is a zoom in on similarity distances up to 5.

agents will tend to form larger components. We verify this argument in Appendix 4.5,
where we break the triangle inequality by randomly assigning similarity distances to
all pairs of agents instead of assigning to the agents similarity coordinates. In this
way forces lose their localization effect and we see that a giant connected component,
non-existent when the similarity space satisfies the metric property, forms in the
middle of the Euclidean space.

In summary, forces emerging from similarity distances in metric spaces appear to
provide a natural explanation for the observed recurrent component dynamics in
face-to-face interaction networks. These forces direct the motion of the agents in
the physical space and determine the agents’ interaction durations. Motion based
on these principles can still capture a wide range of other main properties of such
networks, in addition to their recurrent component patterns. The interactions do not
have to be exactly face-to-face or of few activity cycles. In Appendix A.1, A.2, we
see that similar results hold in a longitudinal dataset from an MIT dormitory, where
proximity was captured if mobile phones were within 10 meters from each other [24].

The modeling approach we consider bears similarities to N -body simulations and
Langevin dynamics [93], suggesting that similar techniques and approaches from
these well established areas of physics can be applicable to contemporary network
science problems. Yet, we note that the similarity forces in our case only direct
the motion of the agents in the physical space, and do not depend on the agents’
distances in this space akin to gravity.

We also observe that hyperbolic spaces appear to underlie the topologies of
traditional complex networks, whose degree distributions are heterogeneous [55]. In
this case, the hidden distance between two nodes is not just the angular distance
R∆θ but the effective distance χ = R∆θ/(κκ′), where κ, κ′ are the expected degrees
of the nodes [55]. One can replace angular with effective distances in the FDM.
However, in all datasets we considered, the distribution of κs was quite homogeneous
to justify the need for this description 1. Indeed, if we use effective distances in
the FDM with the estimated κs from the real data we obtain very similar results
(Sec. 4.7 and Appendix A.4).

1an agent’s κ is its average degree per time slot
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Recurrent components

4.1 Recurrent components

4.1.1 Extraction process
Given a real or simulated network we first find all connected components in each
time slot of the network using the Disjoint Set Union algorithm from [30]. Each
identified component is a set of at least three nodes. We then go over all time slots
from the beginning to the end and assign IDs 1, 2, . . . , etc., to their components as
follows. If a component is seen for the first time, i.e., it does not consist of exactly
the same nodes as a component seen in a previous slot, it is assigned a new ID and
it is marked as unique; if more than one unique components are found in a slot they
are assigned new IDs arbitrarily. Otherwise, if a component consists of exactly the
same nodes as a previously seen component, it is assigned the ID of that component
and it is marked as recurrent.

In Figs. 4.1a-e, Fig. 4.5 below and in Appendix Figs. A.1- A.3, the observation
period (x-axis) is binned into 30 minute intervals, while in Fig. A.4 the observation
period is binned into 60 minute intervals. The black lines spanning each interval
indicate in the y-axis the IDs of the unique components found in the slots of the
interval. Similarly, the blue lines indicate the IDs of the recurrent components found
in each interval.

4.1.2 Unique and recurrent components in real and modeled
networks

Fig. 4.5 shows the unique and recurrent components in the Hospital and in
corresponding simulated networks with the attractiveness and FDM models. Results
are shown for each activity cycle. See Appendix A.1 for results with the other real
networks considered in this chapter, as well as results with another generative model
from the literature [103], described in Section 3.3.

We see that in simulated networks with the attractiveness model recurrent
components are almost non-existent, while they are abundant in simulated networks
with the FDM as in the real data. We note that if attraction forces are disabled in
the FDM (F0 = 0), agents perform random walks, and the results are similar to the
attractiveness model.

4.1.3 Recurrent components and node interactions
Fig. 4.6 and Fig. 4.1h show the correlations between the average number of recurrent
components where a node participates and its total number of interactions in the
real datasets and in the corresponding simulated networks. The total number of
interactions of a node i, Ii, is the total number of edges (interactions) between i
and other nodes j 6= i over the duration of the dataset. This metric is the same as
the strength of the node in the time-aggregated network of contacts (Sec. 3.2). The
number of recurrent components where a node participates is the total number of
such components where the node is a member of over the duration of the dataset.
We measure the recurrent components within intervals of 30 minutes in all cases,
except for the MIT Social Evolution data where we use intervals of 60 minutes. A
recurrent component appearing more than once in an interval is counted only once.
We see that the FDM can better capture the behavior in the real networks compared
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Figure 4.5: (a-d) Unique and recurrent components found in each cycle of activity in the Hospital.
(e-h) Components found in a simulation run of the attractiveness model assuming activity cycles
of the same durations as in (a-d). (i-l) Same as (e-h) but for the FDM (Force-dir. Motion) model.
All simulations use the Hospital parameters (Table 4.2 in Sec. 4.3).
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Figure 4.6: Average number of recurrent components where a node participates as a function of the
total number of interactions of the node in the datasets and in simulated networks with the FDM
(Force-dir. Motion) and attractiveness models. For each real dataset the corresponding simulations
with the models use the dataset’s parameters (Sec. 4.3). The results in (a-d) are averages over 10
simulation runs, while (e) shows results from one simulation run.

to the attractiveness model, as expected. We again note that if attraction forces are
disabled in the FDM (F0 = 0) the results are similar to the attractiveness model.

22



Other properties of real versus modeled networks

4.2 Other properties of real versus modeled
networks

In Fig. 4.7 we compare a range of other properties between the Hospital network
and the corresponding simulated networks with the FDM model. These properties
are described in Sec. 3.2.

We see that the FDM can adequately capture the characteristics of the real-world
networks. An exception is the distribution of the shortest time-respecting paths
between the Conference and the model, where we observe a significant deviation (see
Appendix A.2).
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Figure 4.7: Properties of the Hospital face-to-face interaction network and of corresponding
simulated networks with the FDM (Force-dir. Motion) model. (a) Distribution of contact duration.
(b) Distribution of time between consecutive contacts. (c) Weight distribution. (d) Strength
distribution. (e) Average node strength as a function of node degree. (f) Distribution of component
sizes. (g) Average total interaction duration of a group as a function of its size. (h) Distribution
of shortest time-respecting paths. In all cases the simulation results are averages over 10 runs. The
distributions in (a)-(d) have been binned logarithmically; (e) also uses logarithmic binning. Plot
(f) also shows the results if we randomly assign similarity distances to pairs of nodes (non-metric)
instead of assigning to nodes similarity coordinates (see Sec. 4.5).

4.3 Model parameters
The FDM has the following six parameters: (i) N , which is the number of agents
to simulate; (ii) τ , which is the number of time slots to simulate; (iii) L, which
determines the area of the two-dimensional Euclidean space where agents move
and interact (an L × L square); (iv) µ1 in Eq. (4.1), which controls the average
contact duration; and (v, vi) F0, µ2 in Eq. (4.4), which control the expected agent
displacement due to attraction forces and the abundance and size of components
(see Fig. 4.2 and the related discussion). The interaction radius d and magnitude
of random displacement v are fixed to v = d = 1. One can fix d to any other value
with v = d, which will result in a rescaling of the size of the Euclidean space L.
We also note that the radius of the similarity space in the FDM, R = N/2π, is a
dummy parameter in the sense that if R changes one can rescale µ1, µ2 such that
the bonding and attraction forces (Eqs. (4.1), (4.4)) remain the same. Below we
discuss how we tune the above parameters in the simulated counterparts of each real
network—see Table 4.2 for their values.
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Network N τ τwarmup L µ1 F0 µ2
Hospital 70 4400 2500 95 0.8 0.12 0.9

Primary School 242 3100 2000 98 0.35 0.2 0.78
High School 327 7375 6500 295 1.2 0.11 0.86
Conference 113 7030 6000 340 2.65 0.02 3.6

MIT Social Evolution 62 60905 10000 2200 1.9 0.1 1.03

Table 4.2: FDM parameter values used in the simulated counterpart of each real network.

Parameters N, τ are set equal to the total number of agents and time slots in
the real dataset. τwarmup is a simulation warmup period until the average number
of interacting agents per slot stabilizes. All properties of the simulated networks
are measured after this period. This period is required in order to give time to
the agents that are close in the similarity space to move close to each other in the
Euclidean space, as agents are initially uniformly distributed in the Euclidean space.
One can avoid using a warmup period by assigning to the agents initial positions
in the Euclidean space not uniformly at random but from a snapshot of a previous
simulation run after τwarmup, along with the similarity coordinates that the agents
had in the run. Figs. 4.8a,b show snapshots of the agents in the Euclidean space
at times t = 0 and t = τwarmup + 1 in a simulated counterpart of the High School.
Fig. 4.9b also visualizes the agents in the Euclidean space at time t = 6108 after
τwarmup, while Fig. 4.9a shows the agents in their similarity space. As expected, we
see that the majority of agents that participate in interactions in the snapshot are
very close to each other in the similarity space along the angular direction.

For setting L, µ1, F0, µ2 we follow a two-stage procedure that consists of a
parameter initialization and a parameter tuning phase. We describe these two phases
below.

4.3.1 Parameter initialization

• Parameter L: We set the initial value of this parameter based on the average
number of interacting agents per slot n̄ and the total number of agents N in
the dataset (see Table 4.1 for the values of n̄). Specifically, assuming that there
are no boundary effects, no inactive agents, a uniform spatial distribution of
agents with density δ = N/L2, and an interaction radius d = 1, the expected
degree of an agent is k̄ ≈ Nπ/L2. Therefore, the probability that a given agent
interacts with another agent is pc ≈ π/L2, while the probability that the agent
does not interact with any other agent is (1 − pc)N ≈ e−k̄. This means that
the expected number of interacting agents per slot is n̄ ≈ N(1− e−k̄). Solving
for L we get

L ≈
√
− Nπ

ln (1− n̄/N) . (4.5)

• Parameter µ1 > 0: We set the initial value of this parameter to µ1 = 0.5.

• Parameters F0 ≥ 0, µ2 > 0: From our experiments we observed that
0.1 ≤ F0 ≤ 0.2 with µ2 = 0.8 is a good initial configuration for these parameters.
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4.3.2 Parameter tuning
We next tune the above parameters as described below in order to match the following
quantities between simulated and real networks: (i) the average contact duration; (ii)
the average number of recurrent components per 10 minute interval, while ensuring
a similar size of the largest component formed; and (iii) the average agent degree in
the time-aggregated network. We choose a 10 minute interval in (ii) in order to give
some time to components to break apart (components appearing more than once in
an interval are counted only once), but no more than 10 minutes to avoid losing the
resolution of the components formation. While tuning a specific parameter all other
parameters remain fixed, and we take the average of the corresponding metric over
10 simulation runs.

1. We tune µ1 such that the average contact duration in simulations is
approximately the same as in the real dataset. (The average contact duration
increases with µ1.)

2. We tune F0 and µ2 such that the average number of recurrent components per
interval of 10 minutes is approximately the same as in the real dataset, while
the size of the largest component formed is similar as in the dataset. (As µ2
increases larger components form, until the agents eventually collapse into a
giant connected component. At the same time, the number of components
initially increases and then decreases, see Fig. 4.2(a) and Figs. 4.10a-c below.
A similar behavior is observed as F0 increases because the magnitude of
the deterministic motion increases compared to the magnitude of the random
motion, see Fig. 4.2(b) and Figs. 4.10d-f below. In this case, an eventual collapse
into a giant component can occur if µ2 is not sufficiently small (Fig. 4.2(b)
and Figs. 4.10d-f). In general, to avoid collapses, as one of these parameters
increases the other should decrease.)

3. We tune L such that the average agent degree in the time-aggregated network
is approximately the same as in the real network. (Larger values of L result in
a smaller average agent degree.)

4. We repeat steps (1)-(3) if needed until all considered metrics ((i)-(iii) above)
are approximately the same as in the real dataset.

Finally, each agent i is also assigned an activity value ai, which is the probability
of the agent to become active at the beginning of each slot if the agent is inactive.
In the simulated counterparts of the Hospital and Conference the ais are sampled
uniformly at random from [0, 1]. In the simulated counterparts of the Primary
and High School we assign ai = 0.5 for all agents i, as we have observed that the
number of interactions per agent in the corresponding real datasets is somewhat
more homogeneous than in the Hospital and Conference datasets. We also assign
ai = 0.5 for every agent i in the simulations of the MIT Social Evolution. We note
that after tuning the model parameters as described, the resulting average number
of interacting agents and links per slot are also similar as in the real networks (n̄, l̄
in Table 4.1).

In the attractiveness model [100] we also have v = d = 1 and the free parameters
are the number of agents N , the number of time slots τ , and the size of the space L,
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while the ais are sampled uniformly at random from [0, 1]. In our simulations with
this model N and τ are equal to their counterparts in the real networks, while L is
set such that the average number of interacting agents per slot is approximately the
same as in the real networks. Specifically, the values of L for the simulated networks
of the Hospital, Primary School, High School, Conference and MIT Social Evolution
are L = 44, 50, 80, 85, 45, respectively. A warmup period is not required.
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Figure 4.8: Distribution of the agents in the Euclidean space at t = 0 and t = τwarmup + 1 = 6501
in a simulated counterpart of the High School. Agents engaged in interactions are shown by red
circles while the rest of the agents are shown by light purple circles.

4.4 Agent displacement
In this section we analyze the expected agent displacement in the FDM, E[∆a]. Let
S(t) be the set of moving and interacting agents in slot t and F t,x

i , F t,y
i the total

attractive forces exerted to a moving agent i by all agents j ∈ S(t) along the x and
y directions of the motion,

F t,x
i =

∑
j∈S(t)

Fij cosψtij, cosψtij =
(xtj − xti)√

(xtj − xti)2 + (ytj − yti)2
,

F t,y
i =

∑
j∈S(t)

Fij sinψtij, sinψtij =
(ytj − yti)√

(xtj − xti)2 + (ytj − yti)2
,

(4.6)

(4.7)

where Fij = F0e
−
sij
µ2 and sij = N(π − |π − |θi − θj||)/2π is the similarity distance

between i and j. Since the similarity coordinates are uniformly distributed we can
set without loss of generality θi = 0, and compute the second moment of Fij,

E[F 2
ij] = 1

2π

∫ 2π

0
F 2
ijdθj = F 2

0 µ2

N
(1− e−

N
µ2 ) ≈ F 2

0 µ2

N
, (4.8)

where the last approximation holds for large N/µ2. Further, assuming that ψtij in
Eqs. (4.6), (4.7) is uniformly distributed on [0, 2π], i.e., assuming that the agents
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Figure 4.9: Hidden similarity and physical Euclidean space of the agents. (a) Similarity space
of the agents in a simulated counterpart of the High School. The agents are colored, sized and
marked as in the snapshot of their temporal network in (b) and placed according to their angular
(similarity) coordinates. For visualization purposes, the agents also have radial coordinates assigned
using the formula ri = R− log Ii, where Ii is the total number of interactions of agent i in the
simulation, while R = log maxi{Ii} is the radius of the circle. (b) Snapshot of the agents in the
Euclidean space at time slot t = 6108 (total slots = 7375). The diamonds represent interactions
involving only 2 agents, while the bigger circles represent interactions between at least 3 agents.
The smallest grayed out circles are the moving agents that are not interacting, while inactive agents
are not shown.
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Figure 4.10: Formation and size of components as a function of µ2 (top row) and F0 (bottom
row). In all cases v = d = 1 and the top x-axis indicates the corresponding average agent
displacement. (a, d) Number of components of at least three agents. The squares show the number
of all components formed (unique and recurrent), while the circles show the number of unique
components. The recurrent components are measured within intervals of 10 minutes as described in
the text. Each time slot is assumed to be 20 seconds as in the real face-to-face interaction networks,
and thus the interval of 10 minutes corresponds to 30 time slots in the simulation. The recurrent
components are also measured this way in Fig. 4.2. (b, e) Corresponding recurrent components
rate, i.e., the average number of recurrent components observed in an interval of 10 minutes. (c, f)
Maximum and average size across all components formed (including components of size 2). Other
simulation parameters are N = 242, τ = 3100, τwarmup = 2000, L = 98, µ1 = 0.35 and the activation
probability ai for each agent i is sampled uniformly at random from [0, 1]; these parameter values
are also used in Fig. 4.2. In (a-c) F0 = 1, while in (d-f) µ2 = 1.
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j ∈ S(t) are uniformly distributed around agent i in the Euclidean space, we have
E[cosψtij] = E[sinψtij] = 0, and

E[(cosψtij)2] = E[(sinψtij)2] = 1
2π

∫ 2π

0
(sinψtij)2dψtij = 1

2 . (4.9)

Using Eqs. (4.6)-(4.9) we can write

E[(F t,x
i )2|S(t)] = E[(F t,y

i )2|S(t)] = E


 ∑
j∈S(t)

Fij sinψtij

2
 =

∑
j∈S(t)

E[F 2
ij]E[(sinψtij)2] ≈ F 2

0 µ2

2
|S(t)|
N

. (4.10)

The above relation depends only on the number of moving and interacting agents,
|S(t)|, and not on the exact agent i or the agents j ∈ S(t). Furthermore, the average
number of moving and interacting agents per slot is āN + (1− ā)n̄, where ā is the
average agent activation probability 2. Therefore, removing the condition on the
index i and slot t we can write

E[(F x)2] = E[(F y)2] ≈ F 2
0 µ2

2

(
ā+ (1− ā) n̄

N

)
. (4.11)

Now, from Eqs. 4.2, 4.3, the expected displacement of an agent i in slot t, E[∆ati|S(t)],
is

E[∆ati|S(t)] = E
[√

(xt+1
i − xti)2 + (yt+1

i − yti)2|S(t)
]

= E

[√(
F t,x
i +Rx

i

)2
+
(
F t,y
i +Ry

i

)2
|S(t)

]

≤
√
E
[(
F t,x
i +Rx

i

)2
|S(t)

]
+ E

[(
F t,y
i +Ry

i

)2
|S(t)

]

=
√

2E[(F t,x
i )2|S(t)] + 2E[(Rx

i )2] =
√
F 2

0 µ2
|S(t)|
N

+ v2. (4.12)

As above, we can remove the condition on the index i and slot t and write

E[∆a] ≤
√
F 2

0 µ2

(
ā+ (1− ā) n̄

N

)
+ v2. (4.13)

The inequalities in Eqs. (4.12), (4.13) hold since E[
√
x] ≤

√
E[x] for x ≥ 0 (Jensen’s

inequality for concave functions). Further, since Rx
i = v cosφi, Ry

i = v sinφi, where
φi is sampled uniformly at random from [0, 2π], we also use in Eq. (4.12) the facts
E[Rx

i ] = E[Ry
i ] = 0 and E[(Rx

i )2] = E[(Ry
i )2] = v2/2. Finally, we note that the

magnitude of the random displacement is always
√

(Rx
i )2 + (Ry

i )2 = v.
Table 4.2 shows the values of F0, µ2, N , while Table 4.1 shows the values of n̄.

Parameter v is fixed to v = d = 1 and in all of our simulated networks ā = 1/2
(Sec. 4.3). The corresponding average displacement per slot in the simulations of

2 Given that the expected number of interacting agents per slot is n̄ and that we activate each
of the N − n̄ inactive agents with an average probability ā, the expected number of moving and
interacting agents per slot is n̄+ (N − n̄)ā = āN + (1− ā)n̄.
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the Hospital, Primary School, High School, Conference and MIT Social Evolution
is 1.00356, 1.0090, 1.0023, 1.0005, 1.00271 while the corresponding upper bounds
predicted by Eq. (4.13) are 1.00359, 1.0096, 1.0029, 1.0004, 1.00278. We can see that
the random displacement is significantly larger than the displacement due to the
attraction forces. Specifically, with the Hospital, Primary School, High School,
Conference and MIT Social Evolution parameters we have F0

√
µ2
(
ā+ (1− ā) n̄

N

)
=

0.084, 0.139, 0.077, 0.028, 0.075 vs. v = 1. We note that in general a natural choice
for the total expected displacement is to be in the order of the interaction range d.
This will give the chance to escaping agents to move away from their interactions in
one time slot, without drifting far away.

4.5 Similarity forces in spaces with broken triangle
inequality

The key metric property of the similarity space, i.e., the triangle inequality, ensures
that if an agent a is close to an agent b and b is close to a third agent c, then c is also
close to a. This means that the forces between all the three agents are strong and
these agents will tend to gather close to each other in the Euclidean space forming
triangle abc. In other words, the triangle inequality in the similarity space imposes a
localization effect on the forces, which attract similar agents to form clusters in the
observed network. If the forces decrease fast enough with the similarity distance,
then we indeed expect to see an abundance of small connected components as in the
real datasets and the model (Figs. 4.7f and Appendix A.2). On the other hand, if
the similarity distances do not satisfy the triangle inequality, then agents a and c
might not be close to each other, but instead close to some other agents d and e,
forming chain dabce in the observed network. That is, if the similarity space does
not have a metric structure, forces loose their localization, and agents tend to form
larger components.

To verify these arguments we break the triangle inequality in the similarity space
by assigning similarity distances sampled uniformly from [0, πR] to all pairs of agents
(non-metric case), instead of assigning to the agents similarity coordinates on the
circle (metric case). We see in Figs. 4.7f and Appendix A.2 that indeed in the
non-metric case larger components form even though the values of the simulation
parameters are set exactly as in the metric case.

Furthermore, in Fig. 4.11 we consider simulation runs with the FDM and the
Primary School parameters in Table 4.2, except that in Figs. 4.11a-d we gradually
increase µ2 from 0.1 to 1, while in Figs. 4.11e-h we gradually increase F0 from 0.1
to 1 with µ2 = 0.4. We see that in the non-metric case, as µ2 or F0 increases, the
average number of interacting agents per slot increases much faster than in the
metric case (Figs. 4.11a,e). This is also the case for the average agent degree in
the time-aggregated network (Figs. 4.11b,f) and the size of the largest component
(Figs. 4.11c,g). We also see that in the non-metric case neither µ2 nor F0 can
increase the average number of recurrent components per interval of 10 minutes
beyond a certain value (Figs. 4.11d,h), as most agents collapse into a giant connected
component. Specifically, in the non-metric case agents start forming significantly
larger and larger components after µ2 = 0.5 and F0 = 0.2 (Figs 4.11c,g). For
µ2 ≥ 0.7 and F0 ≥ 0.4 the agents collapse into a giant component in the middle
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of the Euclidean space (cf. Fig. 4.12) and remain collapsed until the end of the
simulation. By contrast, in the metric case the corresponding increases in Figs. 4.11a-
c,e-g are much more gradual and agents do not collapse into a giant component.
Furthermore, the average number of recurrent components per interval of 10 minutes
increases with µ2 and F0 (Figs. 4.11d,h). Therefore, the metric structure of the
similarity space promotes the formation of sparse network snapshots without giant
connected components, as in the real networks. However, this would be a limitation
of the model if one wishes to model a real network where giant connected components
or sufficiently large connected components form. Tuning parameters F0 and µ2 to
form large connected components, approximating the size of a giant connected
component, would cause a collapse of the agents in the middle of the Euclidean
space. The agents would remain collapsed and the other properties reproduced by
the model would break down.
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Figure 4.11: Similarity spaces with metric vs. non-metric structure. (a, e) Average number of
interacting agents per slot in FDM simulated networks with and without metric structure in the
similarity space, as a function of µ2 and F0. In (a) F0 = 0.2 and in (e) µ2 = 0.4. (b, f) Average
agent degree in the time-aggregated network of contacts for the networks in (a, e). (c, g) Size
of the largest component formed in the networks of (a, e). (d, h) Average number of recurrent
components per interval (bin) of 10 minutes in the networks of (a, e). Each point in the plots is an
average over 10 simulation runs.

4.6 Non-uniform similarity coordinates
In this section we consider a non-uniform distribution of the similarity coordinates
corresponding to the organization of agents into communities. To this end, we sample
the angular coordinates of nodes from a Gaussian mixture distribution (GMD) as
in [69]. The GMD is a mixture of multiple Gaussian distribution components,
characterized by the following parameters [67, 69]: (i) C > 0, which is the number of
components, each one representative of a community; (ii) µ1...C ∈ [0, 2π], which are
the means of every component, representing the central locations of the communities
in the angular space; (iii) σ1...C > 0, which are the standard deviations of every
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Figure 4.12: Snapshots of collapsing agents in the middle of the Euclidean space. (a) Snapshot of
the agents in the Euclidean space at time slot t = 2677 (total slots = 3100) in a simulated network
of Fig. 4.11 with non-metric similarity space and µ2 = 0.8, F0 = 0.2. (b) Same as (a) but for
F0 = 0.7, µ2 = 0.4 at slot t = 2981. In both (a, b) the smallest grayed-out circles are inactive agents,
the second smallest circles are moving agents that are not interacting, the dark green squares are
connected components of 2 agents, and the largest multicolored circles are connected components
of least 3 agents. In (a) the agents in the giant connected component are colored purple, while in
(b) they are colored light blue.

component, determining how much the communities are spread in the angular space;
and (iv) ρ1...C (∑i ρi = 1), which are the mixing proportions of every component,
determining the relative sizes of the communities.

We consider simulations of the Primary School. Since in the Primary school
students are divided into 10 classes [102], we assume that there are 10 communities
and sample the angular coordinates of the agents from a GMD with parameters
C = 10, µi = 2π(i − 1)/C, σi = 2π/(8C), ρi = 1/C, i = 1 . . . C. Fig. 4.13(b)
visualizes the distribution of the agents’ coordinates and juxtaposes it against the
uniform distribution (Fig. 4.13(a)). We can see that the agents are divided into 10
distinct communities in the similarity space with each community having a similar
number of agents.

We tune the model parameters L, µ1, F0, µ2 as described in Sec. 4.3, obtaining:
L = 83, µ1 = 0.1, F0 = 0.2, µ2 = 0.32. The rest of the parameters are as in
the simulations of the Primary School in Sec. 4.3. In Figs. 4.14, 4.15 we see that
the results are very similar to the ones in Appendix. A.1, A.2 where the similarity
coordinates were uniformly distributed. In other words, the organization of agents
into communities does not affect the results.

4.7 Hyperbolic space considerations
Hyperbolic spaces appear as the most natural geometric spaces underlying the
observed topologies of traditional complex networks, whose degree distributions are
heterogeneous [55]. In addition to similarity coordinates θs, nodes in these spaces
also have popularity coordinates r, and the hidden distance between two nodes is
not just the angular distance R∆θ but the effective distance χ = R∆θ/(κκ′), where
κ, κ′ are the expected degrees of the nodes, κ ∼ e−r [55, 79].

One can replace the angular distances sij = R∆θij with effective distances
χij = sij/(κiκj) in the bonding and attractive forces of the FDM (Eqs. 4.1, 4.4).
However, in all datasets we considered the distribution of κs was in general quite
homogeneous to justify the need for this description—see Fig. 4.16, where the
expected degree κ of each agent is its average degree per time slot. Indeed, in
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Figure 4.13: (a) Uniform distribution of the similarity coordinates. (b) Non-uniform distribution
of the similarity coordinates corresponding to the separation of agents into 10 communities, each
indicated by a different color.
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Figure 4.14: (a, b) Unique and recurrent components found in a simulation run of the FDM
(Force-dir. Motion) model with the non-uniform similarity coordinates in Fig. 4.13(b), assuming
activity cycles of the same durations as in the Primary School. (c) Average number of recurrent
components where a node participates as a function of the total number of interactions of the node
in the Primary School and in simulated networks with the non-uniform similarity coordinates in
Fig. 4.13(b). The result in (c) is an average over 10 simulation runs.
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Figure 4.15: Properties of the Primary School face-to-face interaction network and of corresponding
simulated networks with the FDM (Force-dir. Motion) model with the non-uniform similarity
coordinates in Fig. 4.13(b). In all cases the simulation results are averages over 10 runs.

Figs. 4.17, 4.18 we see that if we assign to agents the estimated κs from the real
Hospital data and use effective distances in the FDM, we obtain very similar results
as in Secs. 4.1, 4.2 where we use only angular distances. For the simulations in
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Hyperbolic space considerations

Figs. 4.17, 4.18 we tune again the model parameters L, µ1, F0, µ2 as described in
Sec. 4.3, see Table 4.3 for their values. The rest of the simulation parameters are as
in Sec. 4.3.
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Figure 4.16: Distribution of the expected agent degree per time slot in the real data. The Cvs in
the legend indicate the coefficient of variation (ratio of the standard deviation to the mean) of each
distribution.

Network τwarmup L µ1 F0 µ2
Hospital 2500 95 29 0.12 33

Primary School 2000 105 2.7 0.2 6.1
High School 6500 240 23 0.2 16
Conference 1800 75 145 0.05 85

Table 4.3: Parameter values in the simulations with the FDM model that uses effective distances.
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Figure 4.17: (a-d) Unique and recurrent components found in a simulation run of the FDM
(Force-dir. Motion) model that uses effective distances, in activity cycles of the same durations as in
the Hospital. (e) Average number of recurrent components where a node participates as a function
of the total number of interactions of the node in the Hospital and in simulated networks with the
FDM that uses effective distances. The result in (e) is an average over 10 simulation runs.

In Appendix A.4, we show results for the other real networks from SocioPatterns
considered in this chapter.
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4. Similarity forces and recurrent components in human face-to-face interaction
networks
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Figure 4.18: Properties of the Hospital face-to-face interaction network and of corresponding
simulated networks with the FDM (Force-dir. Motion) model that uses effective distances. The
results are averages over 10 simulation runs.
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Chapter 5

Latent geometry and
dynamics of proximity
networks

This chapter has been published, with some modifications, in “Physical
Review E” [78].

Understanding the time-varying proximity patterns among humans in a physical
space is important in various contexts. These include the analysis and containment
of spreading phenomena, like respiratory transmitted diseases, the design of routing
algorithms for mobile networks, and the understanding of social relationships and
influence [1, 9, 16, 24, 41, 42, 44, 48]. To this end, proximity networks have been
captured in different environments [1, 16, 24, 36, 45, 64, 102, 107]. Each snapshot in
these networks corresponds to an observation interval, which typically spans a few
seconds to several minutes depending on the devices used to collect the data. The
agents (nodes) in each snapshot are individuals and an edge between two agents
means that they are within proximity range.

At the finest granularity level an edge between two agents represents a close-range
face-to-face proximity (up to 1.5 m, detected using wearable sensors). Such networks
have been captured over the period of few days or weeks in different closed settings,
such as hospitals, schools, scientific conferences and workplaces [36, 45, 64, 102, 107].
The main motivation for obtaining these data has emerged in epidemiological studies
of infectious diseases. Other proximity networks have been captured for longer
periods of time (months) and over larger areas, such as university campuses, using
Bluetooth sensing or WiFi tracking [1, 16, 24]. These methods yield information
only on proximity at a range, e.g., up to 10 m using Bluetooth devices and up to
40 m or more using WiFi tracking [1, 24, 39]. Thus, proximity in these networks does
not imply face-to-face interaction. The collection of these data has been motivated
by research in mobile networking [16, 44, 48] and social studies [1, 24].

Irrespectively of the context, measurement period, and measurement method,
different proximity networks have been shown to exhibit similar statistical
properties [9, 16, 48, 101]. The most widely studied properties are the aggregated—
obtained by considering the samples from all pairs of nodes together—distributions
of contact and inter-contact durations. The former is the distribution of time that a
pair of nodes spends in contact, i.e., remains within proximity range, while the latter
is the distribution of time separating two contacts between the same pair of nodes.
These metrics are important in determining the capacity and delay of a network,
and the dynamics of spreading processes [20, 34, 60, 96, 108]. It has been found
that both of these distributions are broad in real data and compatible with power
laws, P (t) ∝ t−γ , with or without exponential cutoffs [16, 44, 48, 101]. Studies have
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5. Latent geometry and dynamics of proximity networks

reported exponents γ ≥ 2 for contact durations [19, 92] and γ ∈ (1, 2) for inter-contact
durations [16, 29, 44, 104]. Further, it has been shown that aggregated power laws
can emerge from pairwise distributions that are either power-laws, exponentials or
log-normals, with the latter two better fitting most pairwise inter-contact durations
in real data [18, 31, 81]. Another property of interest is the distribution of the total
duration of contacts between two agents throughout the observation period, called
weight distribution [34, 101, 109]. The aggregated weight distribution is also roughly
compatible with power laws [101], while an exponent γ = 1.4 has been reported for
this distribution in the contact network of high school students [29].

These and other distinctive features of real proximity networks can be well
reproduced by minimal models of mobile interacting agents [87, 100, 101]. Minimal
models, i.e., models that reproduce many of the observed properties under minimal
assumptions, are crucial for generating realistic synthetic networks and understanding
the mechanisms that are responsible for the observed behaviors. In particular, the
Force-Directed Motion (FDM) model presented in Chapter 4, utilizes the idea of
a latent metric space where the agents reside, and where the distance d between
two agents abstracts their similarity. Attractive forces that decrease exponentially
with the similarity distance direct the agents’ motion towards other agents in the
physical space, and determine the duration of their interactions. One can also
consider the effective distance between two agents, χ = d/(κκ′), where κ and κ′ are
the agents’ expected degrees per snapshot, abstracting their popularity [79]. In this
case, dissimilar agents can still be attracted by strong forces if their popularities are
high. The FDM casts the problem of modeling proximity networks as an N -body
problem akin to molecular dynamics [93]. However, mathematically proving the
properties of generated networks by the FDM is not straightforward, and the model
has been so far studied only in simulations.

The FDM has been inspired by the S1 model of traditional (non-mobile) complex
networks [55, 95]. In the S1, nodes are also separated by effective distances χ, and
are connected with the Fermi-Dirac connection probability p(χ) = 1/(1 + χ1/T ),
where T ∈ (0, 1) is the network temperature, controlling clustering [25] in the network.
The S1 is isomorphic to hyperbolic geometric graphs [55]. It can generate network
snapshots that possess many of the common structural properties of real networks,
including heterogeneous or homogeneous degree distributions, strong clustering,
and the small-world property [55, 79, 95]. Fig. 5.1 shows the probability that two
agents are connected in a snapshot of FDM-simulated networks as a function of their
effective distance. Interestingly, we see that this probability resembles qualitatively
the Fermi-Dirac connection probability in the S1 model, even though this form of
connection probability is not enforced into the FDM. Specifically, we see in Fig. 5.1
that the connection probability in the FDM has a smooth step-like form, where
connection probabilities at small distances are orders of magnitude larger than
connection probabilities at large distances.

Motivated by the observation in Fig. 5.1, here we consider a simple latent
space model for human proximity networks, where each snapshot is a realization
of the S1 model. We call this model dynamic-S1 and show that it simultaneously
reproduces many of the observed properties of real systems. The dynamic-S1 does
not model node mobility directly, but captures the connectivity in each snapshot.
By forgoing the motion component it facilitates mathematical analysis, allowing us
to prove the contact, inter-contact and weight distributions. We show that these
distributions are power laws in the thermodynamic limit, with exponents 2 + T ,
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Figure 5.1: Probability that two agents are connected in a snapshot as a function of their effective
distance χ in FDM-simulated counterparts of the hospital, primary school and high school face-to-
face interaction networks [64, 102, 107]; and of the Friends & Family proximity network [1]. The
simulations are performed as in Chapter 4, while the connection probabilities are computed excluding
agents that are inactive in each snapshot. The solid lines are Fermi-Dirac connection probabilities
with temperatures T = 0.84, 0.72, 0.61, 0.53, corresponding respectively to the temperatures of the
hospital, primary school, high school and Friends & Family (Sec. 5.3.2).

2 − T and 1 + T , respectively, where T ∈ (0, 1) is the temperature in the Fermi-
Dirac connection probability. These exponents are within the ranges observed in
real systems. We also show that temperature controls the agents’ time-aggregated
degrees and the formation of unique and recurrent components. Additionally, we
consider paradigmatic epidemic and rumor spreading processes [22, 51] and find that
they perform remarkably similar in real and modeled networks.

The rest of the chapter is organized as follows. In Sec. 5.1 we review the S1 model.
In Sec. 5.2 we introduce the dynamic-S1. In Sec. 5.3 we juxtapose the properties of
modeled and real networks. In Sec. 5.4 we compare the performance of epidemic
and rumor spreading processes running on them. In Sec. 5.5 we mathematically
analyze the main properties of the model. In Sec. 5.6 we elucidate the crucial role of
temperature in the formation of components. Finally, in Sec. 5.8 we conclude this
chapter.

5.1 S1 model

In the S1 model [55] each node has latent (or hidden) variables κ, θ. The latent
variable κ is proportional to the node’s expected degree in the resulting network.
The latent variable θ is the angular similarity coordinate of the node on a circle of
radius R = N/2π, where N is the total number of nodes. To construct a network
with the model that has size N , average node degree k̄, and temperature T ∈ (0, 1),
we perform the following steps:

(1) coordinate assignment: for each node i = 1, 2, . . . , N , sample its angular
coordinate θi uniformly at random from [0, 2π], and its degree variable κi from
a probability density function (PDF) ρ(κ);

(2) creation of edges: connect every pair of nodes i, j with the Fermi-Dirac
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5. Latent geometry and dynamics of proximity networks

connection probability
p(χij) = 1

1 + χ
1/T
ij

. (5.1)

In the last expression, χij is the effective distance between nodes i and j,

χij = R∆θij
µκiκj

, (5.2)

where ∆θij = π − |π − |θi − θj||. Parameter µ in (5.2) is derived from the condition
that the expected degree in the network is indeed k̄, yielding

µ = k̄ sin (Tπ)
2κ̄2Tπ

, (5.3)

where κ̄ =
∫
κρ(κ)dκ. The expected degree of a node with latent variable κ is [55]

k̄(κ) = k̄

κ̄
κ. (5.4)

For sparse networks (k̄ � N) the resulting degree distribution P (k) has a similar
functional form as ρ(κ) [13]. For instance, a power law degree distribution with
exponent γ > 2 is obtained if ρ(κ) ∝ κ−γ, while a Poisson degree distribution with
mean k̄ is obtained if ρ(κ) = δ(κ− k̄), where δ(x) is the Dirac delta function [13, 95].
Smaller values of the temperature T favor connections at smaller effective distances
and increase the average clustering [25] in the network, which is maximized at T = 0,
and nearly linearly decreases to zero with T ∈ [0, 1). At T → 0 the connection
probability in (5.1) becomes the step function p(χij)→ 1 if χij < 1, and p(χij)→ 0
if χij > 1.

5.2 Dynamic-S1

The dynamic-S1 models a sequence of network snapshots, Gt, t = 1, . . . , τ , where
τ is the total number of time slots. Each snapshot is a realization of the S1 model.
Therefore, there are N agents that are assigned latent variables κ, θ as in the S1

model, which remain fixed in all time slots. The temperature T is also fixed, while
each snapshot Gt is allowed to have a different average degree k̄t. Thus, the model
parameters are N, τ, ρ(κ), T , and k̄t, t = 1, . . . , τ . The snapshots are generated
according to the following simple rules:

(1) at each time step t = 1, . . . , τ , snapshot Gt starts with N disconnected nodes,
while k̄ in Eq. (5.3) is set equal to k̄t;

(2) each pair of nodes i, j connects with probability given by Eq. (5.1);

(3) at time t+ 1, all the edges in snapshot Gt are deleted and the process starts
over again to generate snapshot Gt+1.

We note that the snapshots are conditionally independent given the agents’ latent
variables κ1, θ1, . . . , κN , θN , but not independent. In other words, even though each
snapshot Gt is constructed anew, there are correlations among the snapshots that are
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Modeled vs. real networks

induced by the nodes’ effective distances χij . In particular, nodes at smaller effective
distances have higher chances of being connected in each snapshot, as dictated by
the connection probability in (5.1). Fig. 5.2 provides a visualization of snapshots
generated by the model, where we see that agents at smaller similarity distances
tend to stay connected in consecutive time slots and form recurrent components.
Next, we compare the properties of synthetic networks generated by the model and
real networks.
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Figure 5.2: Snapshots from the simulated counterpart of the hospital face-to-face interaction network
generated by the dynamic-S1 (Sec. 5.3). The snapshots correspond to time slots t = 2425-2429.
Each snapshot shows the interacting agents in their similarity space and the connections between
them. The agents are colored according to the connected component where they belong, while
the non-interacting agents in each snapshot, i.e., the agents with zero degree, are not shown to
avoid clutter. The contact duration between agents 60 and 61 is three slots (2426-2428), while the
inter-contact duration between agents 9 and 36 is two slots (2427, 2428). Agents 1, 8 and 33 belong
to a component forming both at t = 2425 and t = 2427 (recurrent component).

5.3 Modeled vs. real networks

5.3.1 Overview of real networks

We consider four face-to-face interaction networks from SocioPatterns [97], which
correspond to: (i) a hospital ward in Lyon [107]; (ii) a primary school in Lyon [102];
(iii) a high school in Marseilles [64]; and (iv) a scientific conference in Turin [45].
These networks were captured over a period of 5, 2, 5 and 2.5 days, respectively.
Each of their snapshots corresponds to a time slot of 20 sec. We also consider
the Bluetooth-based proximity network of the members of a residential community
adjacent to a research university in North America, taken from the Friends and
Family dataset [1]. The snapshots here correspond to slots of 5 min, spanning the
period October 2010 to May 2011. In all cases we number the slots and assign node
IDs sequentially, t = 1, 2, . . . , τ and i = 1, 2, . . . , N . Table 5.1 gives an overview of
the data.

We define the average degree per slot of agent i as

d̄i = 1
τ

τ∑
t=1

di,t, (5.5)

where di,t ≥ 0 is agent’s i degree in slot t, while the average agent (snapshot) degree
in slot t is

k̄t = 1
N

N∑
i=1

di,t. (5.6)
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5. Latent geometry and dynamics of proximity networks

Network N τ n̄ d̄ k̄aggr
Hospital 75 17376 2.9 0.05 30

Primary school 242 5846 30 0.18 69
High school 327 18179 17 0.06 36
Conference 113 10618 3.3 0.03 39

Friends & Family 131 57961 52 1.1 97

Table 5.1: Overview of the considered real networks. N is the number of agents; τ is the total
number of time slots; n̄ is the average number of interacting agents per slot; d̄ is the average
agent degree per slot; and k̄aggr is the average degree in the time-aggregated network (defined in
Sec. 5.3.3). Average values above 10 have been rounded to the nearest integer.

Fig. 5.3 shows the distribution of d̄i and k̄t in the considered networks. The average
agent degree per slot is

d̄ = 1
N

N∑
i=1

d̄i = 1
τ

τ∑
t=1

k̄t. (5.7)
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Figure 5.3: Distribution of the average agent degree per slot (left) and of the average snapshot
degree (right) in the considered networks.

5.3.2 Modeled networks
For each real network we construct its synthetic counterpart using the dynamic-
S1. Each counterpart has the same number of nodes N and duration τ as the
corresponding real network, while the latent variable κi of each agent i = 1, . . . , N is
set equal to the agent’s average degree per slot in the real network,

κi = d̄i. (5.8)

Thus, the distribution of κi is the corresponding empirical distribution in Fig. 5.3
(left). The target average degree k̄t in each snapshot Gt, t = 1, . . . , τ , is set equal
to the average degree in the corresponding real snapshot at slot t. Finally, the
temperature T is set such that the resulting average time-aggregated degree, k̄aggr,
is similar to the one in the real network—we analyze the dependence of k̄aggr on T
in Sec. 5.5.4.

In the counterparts, the expected degree of agent i in slot t is [Eq. (5.4)]

k̄t(κi) = k̄t

d̄
κi, (5.9)
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Modeled vs. real networks

while agent’s i expected degree per slot is ∑τ
t=1 k̄t(κi)/τ = κi. The counterparts aim

at capturing the variability in the number of interacting agents per slot since the
probability that an agent i interacts with at least one other agent in slot t is

Ii,t = 1−
[
1− k̄t(κi)

N − 1

]N−1

, (5.10)

while k̄t(κi) ∝ k̄tκi.

5.3.3 Properties of modeled vs. real networks
Table 5.2 gives an overview of the counterparts. We see that their characteristics
are overall very similar to the ones of the real networks (Table 5.1). Further,
Fig. 5.4 shows that the counterparts indeed capture the variability in the number of
interacting agents per slot.

Modeled network N τ n̄ d̄ k̄aggr T
Hospital 75 17376 2.5 0.04 30 0.84

Primary school 242 5846 33 0.17 69 0.72
High school 327 18179 18 0.06 35 0.61
Conference 113 10618 2.9 0.03 30 0.85

Friends & Family 131 57961 67 1.1 96 0.53

Table 5.2: Modeled counterparts. The values of n̄, d̄ and k̄aggr are averages over 20 simulation runs
except from the Friends & Family where the averages are over 5 runs. Average values above 10
have been rounded to the nearest integer.
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Figure 5.4: Number of interacting agents per slot in real and modeled networks. In the first four
plots the cycles of activity, i.e., the periods with high numbers of interacting agents, correspond
to the consecutive observation days where the agents were present in the corresponding premises
(5, 2, 5 and 2.5 days, respectively.) There is a single activity cycle in the last plot, spanning the
whole observation period—proximity in the Friends & Family was constantly captured using mobile
phones.

In Figs. 5.5 and 5.6 we compare a range of other properties between real and
modeled networks, considered also in [99, 100] and in Chapter 4, Sec. 4.1.3.

Figs. 5.5 and 5.6 show that the dynamic-S1 reproduces all the properties considered
remarkably well. A main exception are the longer paths in the conference [Fig. 5.5(f)],
which can not be captured by the model. We also note that k̄aggr in conference’s
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5. Latent geometry and dynamics of proximity networks

counterpart could not exceed ≈ 30 (vs. 39 in the real network). Thus, the dynamic-S1

does not totally capture the characteristics of this network. Interestingly, this was
also the case with the FDM (Appendix A.2). Finally, we note that the ability
of the model to capture the properties of the considered networks is not due to
mere calibration of expected node degrees. In Appendix B.2, we show that the
configuration model [17, 80] with the same calibration of expected node degrees,
Eqs. (5.8, 5.9), cannot reproduce the abundance of recurrent components, nor the
broad contact, inter-contact and weight distributions observed in the real systems.
Further, in Sec. 5.5 we prove these distributions in the dynamic-S1 and show that
they do not depend on the distribution of the degree variables ρ(κ). Below, we also
investigate the pairwise contact and inter-contact distributions in modeled and real
networks.
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Figure 5.5: Real face-to-face interaction networks vs. simulated networks with the dynamic-S1.
(a) Contact distribution. (b) Inter-contact distribution. (c) Weight distribution. (d) Strength
distribution. (e) Distribution of component sizes. (f) Distribution of shortest time-respecting path
lengths. (g) Average total duration of a group as a function of its size. (h) Average number of
recurrent components where an agent participates as a function of the total number of interactions
of the agent. The results with the model are averages over 20 simulation runs and correspond
to the counterparts of the hospital and primary school. Similar results hold for the rest of the
counterparts, not shown to avoid clutter. The probabilities in (a)-(f) represent relative frequencies,
i.e., they are computed as ni/

∑
j nj , where ni is the number of samples that have value i. (a)-(d)

have been binned logarithmically. Durations are measured in numbers of time slots.
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Figure 5.6: Same as Fig. 5.5 but for the Friends & Family proximity network and its modeled
counterpart. The results with the model are averages over 5 simulation runs.

5.3.4 Pairwise contact and inter-contact distributions
If the expected snapshot degrees, k̄t, t = 1, . . . , τ , are independent and identically
distributed, the pairwise contact and inter-contact distributions in the dynamic-S1
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Modeled vs. real networks

are geometric at τ →∞ 1. Indeed, in this case the probability for two nodes i, j with
latent variables κi, κj and angular distance ∆θij to remain connected for t = 1, 2, . . .
slots, is

Pc(t;κi, κj,∆θij) = p̄t−1
ij (1− p̄ij) ,

p̄ij ≡
∫
p[χij(k̄)]f(k̄)dk̄,

(5.11)

where p[·] is the connection probability in Eq. (5.1), while χij(k̄) is the effective
distance between the two nodes, which depends on the average snapshot degree k̄
[Eqs. (5.2, 5.3)], whose PDF is denoted by f(·). Similarly, the probability that the
two nodes remain disconnected for t = 1, 2, . . . slots, is

Pic(t;κi, κj,∆θij) = (1− p̄ij)t−1 p̄ij. (5.12)

In general, these distributions are not geometric in the model as they depend on
the stochastic process that describes the time evolution of the expected snapshot
degrees.

Previous studies have reported that a significant portion of pairwise inter-contact
durations in real data can be fitted with exponential distributions [18, 31]. Since the
geometric distribution is the discrete analogue of the exponential distribution, these
studies are in line with Eq. (5.12). Given these results, we check below how well the
geometric distribution captures the pairwise contact and inter-contact distributions
in the considered real systems and their modeled counterparts.

For each pair of nodes we consider the sets of its contact and inter-contact
durations in each of the activity cycles shown in Fig. 5.4. We consider sets with at
least three distinct duration values. For each set we estimate the parameter of the
geometric distribution, i.e., the success probability p = 1/m, where m is the mean of
the durations in the set. Then, we draw the same number of samples as the number
of durations in the set from a geometric distribution with parameter p. Subsequently,
we use the two-sample Kolmogorov-Smirnov (KS) goodness of fit test [6, 63] to test
the hypothesis that the values in the set and the sampled values have the same
distribution. We recall that such a statistical test can only reject or fail to reject
a given hypothesis for a given significance level α. This level corresponds to the
probability of incorrectly rejecting the hypothesis, while if the test fails to reject
the hypothesis, we only know that this is true to a confidence level 1− α. We use
α = 0.01, and find for each activity cycle the percentage of pairs for which the test
failed to reject the hypothesis. Table 5.3 shows the average of this percentage across
the activity cycles in each network, averaged across ten repetitions of the above
procedure. The results for each counterpart are also averaged across ten different
temporal network realizations.

We see in Table 5.3 that the geometric distribution fits a high percentage of
contact durations in both modeled and real networks. It also fits a high percentage
of inter-contact durations in modeled networks, and a significant percentage of
inter-contact durations in the real systems, which however is not as high as in the
modeled networks. These results suggest that the model captures the variability of
the contact durations in the real systems. However, it does not totally capture the
variability of the inter-contact durations.

1For finite τ they are truncated geometric.
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Network Contact dist. Inter-contact dist.
geometric geometric log-normal

HP (model) 98% 97% 99%
HP (real) 97% 69% 100%
PS (model) 100% 100% 99%
PS (real) 98% 69% 100%

HS (model) 98% 98% 98%
HS (real) 94% 65% 100%

CF (model) 95% 92% 99%
CF (real) 97% 64% 100%

F & F (model) 80% 85% 87%
F & F (real) 77% 60% 78%

Table 5.3: Percentage of pairs (rounded to the nearest integer) where the KS test failed to reject
the hypothesis that their contact/inter-contact distribution is geometric. The table also shows the
results where a log-normal distribution is assumed for the inter-contact durations; samples from
the log-normal are rounded to the nearest integer before applying the KS test. (HP: Hospital; PS:
Primary school; HS: High school; CF: Conference; F & F: Friends and Family.)

To verify the last statement we also consider a log-normal distribution for
the inter-contact durations, which offers a more versatile model to capture the
variability in the distributions [18]. We recall that the PDF of the log-normal is
f(x) = 1/(xσ

√
2π)e−(lnx−µ)2/(2σ2), while its skewness is (eσ2 + 2)

√
eσ2 − 1. For each

pair of nodes, the parameters µ and σ2 are the mean and variance of the logarithms
of its inter-contact durations. We see in Table 5.3 that the log-normal better fits
the inter-contact durations, especially in the real systems, as also observed in [18].
Further, Fig. 5.7 shows that the inter-contact distributions in the real networks
are indeed more skewed on average than in their counterparts. Nevertheless, the
aggregated inter-contact distributions are very similar in real and synthetic systems
[Figs. 5.5(b), 5.6(b)]. In the next section we also see that paradigmatic dynamical
processes perform similarly in the two.
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HS | σ̄ = 1.65
F & F | σ̄ = 2.60
HP (Model) | σ̄ = 1.04
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Figure 5.7: Empirical complementary cumulative distribution function (ECCDF) of the estimated
log-normal’s σ in real and modeled networks. The average (σ̄) of each distribution is indicated in
the legend.
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Figure 5.8: Performance of the SIS and DK processes in real and modeled networks. Top row:
prevalence of the SIS process as a function of the infection probability α for two recovery probabilities
β. Bottom row: size of the rumor in the DK process as a function of the probability to communicate
the rumor α for two stifling probabilities β. The results are averages over ten runs of each process in
the activity cycles indicated in the plots. Each run of the SIS/DK process starts with a random set
of infected/spreader agents that consists of 10% of agents. The results for the modeled counterparts
are also averaged across ten different temporal network realizations.

5.4 Dynamical processes on modeled vs. real
networks

We consider the susceptible-infected-susceptible (SIS) epidemic spreading model [51]
and the DK (Daley and Kendall) model for rumor spreading [22]. In the SIS each
agent can be in one of two states, susceptible (S) or infected (I). At any time slot an
infected agent recovers with probability β and becomes susceptible again, whereas
infected agents infect the susceptible agents with whom they interact with probability
α. Thus, the transition of states is S → I → S. In the DK model each agent can be
in one of three states, ignorant (I), spreader (S) or stifler (R). An ignorant agent
that interacts with a spreader receives the rumor with probability α and becomes a
spreader, while a spreader that interacts with another spreader or a stifler becomes
a stifler with probability β and no longer communicates the rumor. The transition
of states is I → S → R.

To simulate the SIS process on temporal networks we use the dynamic SIS
implementation of the Network Diffusion Library [90]. We have also modified this
library to implement the DK model. For the SIS process we consider the average
percentage of infected agents per slot (prevalence), while for the DK process we
consider the percentage of stiflers at the final slot (size of the rumor). Fig. 5.8 shows
that the two processes perform remarkably similar in real and modeled networks. The
only exception is in the performance of the SIS in the conference and its counterpart
at low infection probabilities [Fig. 5.8(d)]—a similar behavior has been observed in
the FDM (Appendix A.3) and it may be due to the fact that the models do not
totally capture the characteristics of this network, as noted in Sec. 5.3.3.

5.5 Mathematical analysis
Here we perform a detailed mathematical analysis of the main properties of the
dynamic-S1. To facilitate the analysis, we assume that the expected snapshot degree
is the same in all time slots, k̄t = k̄, ∀t. This assumption renders the connection
probability between two nodes [Eq. (5.1)] the same in all slots. However, we illustrate
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5. Latent geometry and dynamics of proximity networks

that the analytical results match closely the simulation results from the modeled
counterparts of real systems, where this assumption does not hold.

We show that for sparse snapshots, k̄ � N , and large durations τ , the aggregated
contact, inter-contact and weight distributions can be approximated by power
laws with exponents 2 + T , 2 − T and 1 + T , respectively, where T ∈ (0, 1) is
the temperature in the connection probability. Technically, we consider these
distributions in the thermodynamic limit, N →∞, and show that they are power-
laws with the aforementioned exponents at τ → ∞. Interestingly, these results
do not depend on the distribution of the latent degree variables ρ(κ). Further,
we analyze the expected degree in the time-aggregated network, and show that
in finite networks the expected strength of a node grows super-linearly with its
time-aggregated degree, as empirically observed in prior studies [100, 101]. We begin
with the contact distribution.

5.5.1 Aggregated contact distribution

The probability rc(t;κi, κj,∆θij) to observe a sequence of exactly t = 1, 2, . . . , τ − 2
consecutive slots where two nodes i, j with latent variables κi, κj and angular distance
∆θij are connected, is the percentage of time τ where we observe a slot where these
two nodes are not connected, followed by t slots where they are connected, followed
by a slot where they are not connected 2. For each duration t, there are τ − t− 1
possibilities where this duration can be realized. For instance, if t = 2 the two nodes
can be disconnected in slot i− 1, connected in slots i, i+ 1, and disconnected in slot
i+ 2, where i = 2, . . . , τ − 2. Therefore, the percentage of observation time where a
duration of t slots can be realized is (τ − t− 1)/τ . Since the two nodes are connected
in each slot with probability p(χij) with χij in Eq. (5.2), we have

rc(t;κi, κj,∆θij) =
(
τ − t− 1

τ

)
p(χij)t[1− p(χij)]2. (5.13)

Removing the condition on ∆θij, which is uniform on [0, π], yields

rc(t;κi, κj) =
(
τ − t− 1

τ

) 1
π

π∫
0

p(χij)t[1− p(χij)]2d∆θij

=
(
τ − t− 1

τ

) 2µκiκj
N

×

N
2µκiκj∫

0

p(χij)t[1− p(χij)]2dχij

=
(
τ − t− 1

τ

)(
N

2µκiκj

)2/T (
T

2 + T

)

×2F1

t+ 2, 2 + T, 3 + T,−
(

N

2µκiκj

)1/T
 ,

(5.14)

2For brevity we ignore the cases where the first/last of the slots that two nodes can be connected
starts/ends at the beginning/end of the observation period.
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where 2F1[a, b, c; z] is the Gauss hypergeometric function [72]. At N → ∞, the
integral in (5.14) simplifies for T ∈ (0, 1) and t ≥ 1, to

∞∫
0

p(χij)t[1− p(χij)]2dχij = TΓ(2 + T )Γ(t− T )
Γ(t+ 2) , (5.15)

where Γ(z) is the complete gamma function, Γ(z) =
∫∞

0 xz−1e−xdx, z > 0 3.
From (5.14, 5.15), we have

Nrc(t;κi, κj) N→∞−−−→
(
τ − t− 1

τ

)
2µκiκj

×TΓ(2 + T )Γ(t− T )
Γ(t+ 2) . (5.16)

Removing the condition on κi and κj, gives

Nrc(t) = N
∫ ∫

rc(t;κi, κj)ρ(κi)ρ(κj)dκidκj

N→∞−−−→
(
τ − t− 1

τ

) 2µκ̄2TΓ(2 + T )Γ(t− T )
Γ(t+ 2) . (5.17)

The aggregated contact distribution, Pc(t), is the probability that two nodes are
connected for exactly t consecutive slots given that t ≥ 1,

Pc(t) = rc(t)∑τ−2
t=1 rc(t)

. (5.18)

From (5.17, 5.18), we have

Pc(t) N→∞−−−→ (τ − t− 1)
g(τ)

Γ(t− T )
Γ(t+ 2) ≈

(τ − t− 1)
g(τ)

1
t2+T , (5.19)

where
g(τ) ≡ [(τ − 1)T − 1] Γ(1− T )

T + T 2 + Γ(τ − T )
(T + T 2)Γ(τ) .

The approximation in (5.19) uses the facts Γ(t− T ) ≈ t−TΓ(t) and Γ(t+ 2) ≈ t2Γ(t),
which hold for t� 1. We see from (5.19) that for t� τ , Pc(t) is approximately a
power law with exponent 2 + T . At τ →∞, we have a pure power law

Pc(t)
N→∞
τ→∞−−−→ 1 + T

Γ(1− T )
Γ(t− T )
Γ(t+ 2) ≈

1 + T

Γ(1− T )
1

t2+T . (5.20)

Fig. 5.9 shows that (5.20) provides an excellent approximation to simulation results.
From (5.19), the expected contact duration in the thermodynamic limit is

t̄c
N→∞−−−→

τ−2∑
t=1

t
(τ − t− 1)

g(τ)
Γ(t− T )
Γ(t+ 2)

= Γ(2− T )Γ(τ + 1)− Γ(τ − T )[(1 + T )τ − 2T ]
Γ(2− T )[(τ − 1)T − 1]Γ(τ) + Γ(τ − T )(1− T ) . (5.21)

At τ →∞, the last relation simplifies to

t̄c
N→∞
τ→∞−−−→ 1

T
. (5.22)

Next, we derive the aggregated inter-contact distribution following the same steps.
3If z is a positive integer then Γ(z) = (z − 1)!.
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Figure 5.9: Aggregated contact distribution in the simulated counterparts of the hospital and
Friends & Family (Sec. 5.3.2) vs. theoretical prediction in (5.20) with T = 0.84, 0.53. Similar results
hold for the rest of the counterparts.

5.5.2 Aggregated inter-contact distribution
Let ric(t;κi, κj,∆θij) be the probability to observe a slot where two nodes i, j with
latent variables κi, κj and angular distance ∆θij are connected, followed by t slots
where they are not connected, followed by a slot where they are again connected.
We have

ric(t;κi, κj,∆θij) =
(
τ − t− 1

τ

)
p(χij)2[1− p(χij)]t. (5.23)

Removing the condition on ∆θij, yields

ric(t;κi, κj) =
(
τ − t− 1

τ

) 1
π

π∫
0

p(χij)2[1− p(χij)]td∆θij

=
(
τ − t− 1

τ

) 2µκiκj
N

×

N
2µκiκj∫

0

p(χij)2[1− p(χij)]tdχij

=
(
τ − t− 1

τ

)(
N

2µκiκj

)t/T (
T

t+ T

)

×2F1

t+ T, t+ 2, t+ T + 1,−
(

N

2µκiκj

)1/T
 .

(5.24)

At N →∞, the integral in (5.24) simplifies for T ∈ (0, 1), to
∞∫
0

p(χij)2[1− p(χij)]tdχij = TΓ(2− T )Γ(t+ T )
Γ(t+ 2) . (5.25)

From (5.24, 5.25), and after removing the condition on κi and κj, we have

Nric(t) N→∞−−−→
(
τ − t− 1

τ

) 2µκ̄2TΓ(2− T )Γ(t+ T )
Γ(t+ 2) . (5.26)

The aggregated inter-contact distribution, Pic(t), is the probability that two
nodes are disconnected for exactly t consecutive slots given that t ≥ 1,

Pic(t) = ric(t)∑τ−2
t=1 ric(t)

. (5.27)
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From (5.26, 5.27), we have

Pic(t) N→∞−−−→ (τ − t− 1)
h(τ)

Γ(t+ T )
Γ(t+ 2) ≈

(τ − t− 1)
h(τ)

1
t2−T

, (5.28)

where
h(τ) ≡ [(τ − 1)T + 1]Γ(1 + T )

T − T 2 − Γ(τ + T )
(T − T 2)Γ(τ) .

The approximation in (5.28) holds for t� 1. For t� τ , Pic(t) is approximately a
power law with exponent 2− T . At τ →∞, we have a pure power law

Pic(t)
N→∞
τ→∞−−−→ 1− T

Γ(1 + T )
Γ(t+ T )
Γ(t+ 2) ≈

1− T
Γ(1 + T )

1
t2−T

. (5.29)

Fig. 5.10 juxtaposes (5.29) against simulation results.
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Figure 5.10: Aggregated inter-contact distribution in the simulated counterparts of the hospital
and Friends & Family (Sec. 5.3.2) vs. theoretical prediction in (5.29) with T = 0.84, 0.53. Similar
results hold for the rest of the counterparts.

From (5.28), the expected inter-contact duration in the thermodynamic limit is

t̄ic
N→∞−−−→

τ−2∑
t=1

t
(τ − t− 1)

h(τ)
Γ(t+ T )
Γ(t+ 2)

= Γ(τ + T )[(1− T )τ + 2T ]− Γ(2 + T )Γ(τ + 1)
Γ(2 + T )[(τ − 1)T + 1]Γ(τ)− Γ(τ + T )(1 + T ) . (5.30)

The above relation increases approximately exponentially with T ∈ (0, 1), and
diverges at τ →∞,

t̄ic
N→∞
τ→∞−−−→∞. (5.31)

We proceed with the weight distribution.

5.5.3 Aggregated weight distribution

The probability that two nodes i, j with latent variables κi, κj and angular distance
∆θij are connected in t = 0, 1, . . . , τ slots, is given by the binomial distribution

rw(t;κi, κj,∆θij) =
(
τ

t

)
p(χij)t[1− p(χij)]τ−t. (5.32)
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Removing the condition on ∆θij, yields

rw(t;κi, κj) = 1
π

(
τ

t

) π∫
0

p(χij)t[1− p(χij)]τ−td∆θij

= 2µκiκjT
N

(
τ

t

) 1∫
umin
ij

ut−T−1
ij (1− uij)τ−t+T−1duij

= 2µκiκj
N

TΓ(τ + 1)
Γ(τ − t+ 1)Γ(t+ 1)

Γ(τ − t+ T )Γ(t− T )
Γ(τ)

−
(umin

ij )t−T

t− T 2F1(t− T, 1− τ − T + t, t− T + 1, umin
ij )

, (5.33)

where
umin
ij ≡

1

1 +
(

N
2µκiκj

)1/T . (5.34)

To reach (5.33), we perform the change of integration variable uij ≡ p(χij)
and express the binomial coefficient in terms of gamma functions,

(
τ
t

)
=

Γ(τ + 1)/[Γ(τ − t+ 1)Γ(t+ 1)].
At N →∞, umin

ij → 0, and the second term inside the brackets in (5.33) vanishes
for T ∈ (0, 1) and t ≥ 1. Removing the condition on κi and κj, we have

Nrw(t) N→∞−−−→ 2µκ̄2TτΓ(τ − t+ T )Γ(t− T )
Γ(τ − t+ 1)Γ(t+ 1) . (5.35)

For t = 0, we can write

N [1− rw(0)] = N
τ∑
t=1

rw(t) N→∞−−−→ 2µκ̄2Γ(1− T )Γ(τ + T )
Γ(τ) . (5.36)

The aggregated weight distribution, Pw(t), is the probability that two nodes are
connected in t slots given that t ≥ 1,

Pw(t) = rw(t)∑τ
t=1 rw(t) . (5.37)

From (5.35, 5.37), we have

Pw(t) N→∞−−−→ 1
w(τ)

Γ(τ − t+ T )Γ(t− T )
Γ(τ − t+ 1)Γ(t+ 1)

≈ 1
w(τ)(τ − t)1−T

1
t1+T ,

(5.38)

(5.39)

where
w(τ) ≡ Γ(1− T )Γ(τ + T )

TΓ(τ + 1) .

The approximation in (5.39) holds for 1� t� τ . We see from (5.39) that for t� τ ,
Pw(t) is approximately a power law with exponent 1 + T . At τ → ∞, we have a
pure power law

Pw(t)
N→∞
τ→∞−−−→ T

Γ(1− T )
Γ(t− T )
Γ(t+ 1) ≈

T

Γ(1− T )
1

t1+T . (5.40)
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From (5.38), the expected weight in the thermodynamic limit is

t̄w
N→∞−−−→

τ∑
t=1

t

w(τ)
Γ(τ − t+ T )Γ(t− T )
Γ(τ − t+ 1)Γ(t+ 1)

=Γ(1 + T )Γ(τ + 1)
Γ(τ + T ) ≈ Γ(1 + T )τ 1−T . (5.41)

The above relation decreases approximately exponentially with T ∈ (0, 1), and
diverges at τ →∞,

t̄w
N→∞
τ→∞−−−→∞. (5.42)

We next turn our attention to the expected degree in the time-aggregated network.

5.5.4 Time-aggregated degree and finite size effects
The probability that two agents i, j with latent variables κi, κj do not interact, is
obtained by setting t = 0 in (5.33),

rw(0;κi, κj) =2µκiκj
N

TΓ(τ + T )Γ(−T )
Γ(τ)

+(umin
ij )−T 2F1(−T, 1− τ − T, 1− T, umin

ij )
, (5.43)

where umin
ij in (5.34). Removing the condition on κi and κj gives the probability that

two agents do not interact

rw(0) =
∫ ∫

rw(0;κi, κj)ρ(κi)ρ(κj)dκidκj. (5.44)

The expected time-aggregated degree is

k̄aggr = (N − 1) [1− rw(0)] . (5.45)

At N → ∞, k̄aggr is given by (5.36). Substituting µ in (5.36) with its expression
in (5.3), gives

k̄aggr
N→∞−−−→ Γ(τ + T )κ̄

Γ(1 + T )Γ(τ) ≈
τT κ̄

Γ(1 + T ) , (5.46)

which increases exponentially with T and linearly with κ̄. Fig. 5.11 juxtaposes
simulation results against (5.44, 5.45) and the limit in (5.46). We see an excellent
agreement between (5.44, 5.45) and simulations, while (5.46) is a good approximation
only at sufficiently low temperatures.

Similarly, the expected time-aggregated degree of a node with latent variable κi,
is

k̄aggr(κi) = (N − 1)
[
1−

∫
rw(0;κi, κj)ρ(κj)dκj

]
N→∞−−−→ Γ(τ + T )κi

Γ(1 + T )Γ(τ) ≈
τTκi

Γ(1 + T ) .

(5.47)

(5.48)

Fig. 5.12 juxtaposes simulation results against (5.47) and (5.48). We again see an
excellent agreement between the exact prediction (5.47) and simulations, while (5.48)
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Figure 5.11: Average time-aggregated degree as a function of the temperature T in simulated
networks vs. (5.44, 5.45) and (5.46). The simulation parameters are N = 75, k̄ = 0.05 and τ = 17376
(as in the hospital), while κi = k̄, ∀i, i.e., the PDF of κ is the Dirac delta function, ρ(κ) = δ(κ− k̄).

is a good approximation only for sufficiently small k̄aggr(κ). Therefore, one in general
needs to use exact expressions [(5.44, 5.45), (5.47)] to accurately compute expected
time-aggregated degrees. The thermodynamic limit approximations [(5.46), (5.48)]
are accurate only at sufficiently low temperatures.
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N=131

Figure 5.12: Average time-aggregated degree as a function of the latent degree variable κ in the
simulated counterpart of the Friends & Family (Sec. 5.3.2) vs. (5.47) and (5.48). The simulation
results are averages over 5 runs.

We also note that the normalization factor w(τ) of the weight distribution in (5.38)
can be rewritten as

w(τ) = Γ(1− T )Γ(T )k̄aggr
τ κ̄

, (5.49)

where k̄aggr in (5.46). Fig. 5.13 juxtaposes (5.38) against simulation results, where
in view of Fig. 5.11, we use in (5.49) the actual value of k̄aggr in the simulations
instead of its limit in (5.46). We see again a very good agreement between theory
and simulations.

5.5.5 Strength-degree correlations

We now analyze the strength-degree correlations in the time-aggregated network and
justify previous empirical observations reporting a super-linear dependence between
an individual’s expected strength and its time-aggregated degree [100, 101].

The expected weight between two nodes i, j with latent variables κi, κj, is

w(κi, κj) =
τ∑
t=1

trw(t;κi, κj), (5.50)
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Figure 5.13: Aggregated weight distribution in the simulated counterparts of the hospital and
Friends & Family (Sec. 5.3.2) vs. theoretical prediction given by (5.38, 5.49) with τ, T, k̄aggr and
κ̄ = d̄ as in Table 5.2. The upward bendings at the tails of the distributions are due to the finite
observation time τ . Similar results hold for the rest of the counterparts.

where rw(t;κi, κj) in (5.33). At N →∞, the second term inside the brackets in (5.33)
vanishes for T ∈ (0, 1) and t ≥ 1, yielding

Nw(κi, κj) N→∞−−−→2µκiκjTτ
τ∑
t=1

t
Γ(τ − t+ T )Γ(t− T )
Γ(τ − t+ 1)Γ(t+ 1)

=τ k̄κiκj
κ̄2 . (5.51)

The expected strength of a node with latent variable κi, is

s̄(κi) = N
∫
w(κi, κj)ρ(κj)dκj N→∞−−−→ τ k̄κi

κ̄
. (5.52)

Fig. 5.14 juxtaposes (5.52) against simulation results. We see that (5.52) can be a
good approximation in finite networks. This is because the second term inside the
brackets in (5.33) vanishes even for finite networks as t increases. The smaller the
temperature the faster this term vanishes and the better the approximation in (5.52)
is for finite networks.

10-4 10-3 10-2 10-1 100
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x=y

Figure 5.14: Normalized average strength s̄(κ)/τ as a function of the latent degree variable κ in the
simulated counterparts of the hospital and Friends & Family (Sec. 5.3.2). The results are averages
over 20 and 5 runs, respectively. In the counterparts k̄ = κ̄ (= d̄), canceling out in (5.52).

We also see from (5.48, 5.52) that in the thermodynamic limit the expected
strength of a node grows linearly with its expected time-aggregated degree,

s̄(κi) ∝ k̄aggr(κi). (5.53)

However, in the counterparts k̄aggr(κi) grows sub-linearly with κi (Fig. 5.12), while
s̄(κi) grows approximately linearly (Fig. 5.14). Thus, in the considered systems we
expect the strength of a node to grow super-linearly with its time-aggregated degree,
as verified in Fig. 5.15 and empirically observed in prior studies [100, 101].
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Figure 5.15: Average strength as a function of the time-aggregated degree in real and simulated
networks. Similar results hold for the rest of the real networks and their counterparts from Sec. 5.3.2.

5.6 Component dynamics and temperature

Finally, we elucidate the important role of the temperature T in the formation of
components. To this end, we consider the connected components formed in all time
slots throughout the observation period τ , which consist of at least three nodes. We
consider both unique and recurrent components. A component in a slot is called
unique if it is seen for the first time, i.e., it is a component that does not consist
of exactly the same nodes as a component seen in a previous slot. Otherwise, the
component is recurrent. Fig. 5.16 shows that as T increases, the number of unique
components increases almost exponentially up to a point and then decreases. This is
because larger values of T increase the connection probability [Eq. (5.1)] at larger
distances (χij > 1), while decreasing it at smaller distances (χij < 1). Since there are
more pairs of nodes separated by larger distances, the number of unique components
formed increases. However, at larger T closer to one, the probability of connections is
relatively small at smaller and larger distances, which causes this number to decrease.
The inset in Fig. 5.16 shows the size of the largest component formed.
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Figure 5.16: Number and size of components formed vs. temperature T . The simulation parameters
are the same as in the counterpart of the hospital (Sec. 5.3.2) except that T varies in (0, 1).

Further, Fig. 5.16 shows that the ratio of the total number of components formed
to the number of unique components formed decreases with T ∈ (0, 1). This means
that as T increases fewer recurrent components are formed per unique component.
This is expected since at larger T unique components consist of pairs separated by
larger distances, and the probability to form again the same such components is
vanishing.
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5.7 Simulation of the spread of COVID-19 on
synthetic networks generated from real survey
data

The results in this section have not been published but we present interesting
preliminary results on the applicability of the dynamic-S1 to model real life epidemic
spreading scenarios to better inform decision makers on the implementation of
containment measures.

Human proximity networks can be used to study the diseases that spread through
contacts in a physical space. However, real human proximity data is not widely
available and only few datasets exist for a small number of settings. On the other
hand, survey data about the daily contacts among individuals is easy to generate
and plenty of datasets exist. Here we show that realistic synthetic human proximity
networks can be generated from such survey data using the dynamic-S1 model and
simulate the spread of COVID-19 on the generated networks with a Susceptible
Exposed Infected Removed (SEIR) model.

To generate synthetic human proximity networks with the dynamic-S1 model,
we consider a survey of 578 individuals is Cyprus [5] (unpublished data). In the
data, the participants have declared their number of contacts in a single day at
work, elsewhere and at home, before and during the lockdown in Cyprus during
the COVID-19 pandemic in the summer of 2020. Although the reported contacts
correspond to all contacts of the participants and not to their contacts with the
other participants, to generate the synthetic networks we assume that the contacts
in each period are among the 578 participants. The main idea is that the number
of contacts reported by a participant at work/elsewhere/home is the participant’s
time-aggregated degree in a human proximity network corresponding to one day of
observation at work/elsewhere/home. The dynamic-S1 model can then generate a
synthetic human proximity network for an average day at work/elsewhere/home,
before or during the lockdown, using only the corresponding time-aggregated degrees
of the nodes.

In Table 5.4 we categorize the 578 participants according to their age into different
age groups. For each participant we consider her/his total number of daily contacts—
the sum of her/his contacts at work, elsewhere and home—before and during the
lockdown and compare the average number of daily contacts in each age group with
the average number of daily contacts in the same age group from the POLYMOD
dataset [68]. The POLYMOD dataset is a large-scale survey of the contact patterns
of 7, 290 participants across eight European countries. The participants recorded
their contacts in a diary for a period of one day including information such as age,
sex, location, duration and frequency. Compared to the POLYMOD data, we observe
a severe over-reporting of contacts in the Cyprus data. Most probably due to recall
bias: the participants of the study were simply asked to report their number of
contacts at work, elsewhere and at home in a regular day before the lockdown and
a regular day during lockdown, instead of keeping a detailed diary of contacts like
in the POLYMOD study. For this reason, we normalize the number of contacts at
work, elsewhere and home of each participant so that the average number of daily
contacts in each age group is approximately the same as in the POLYMOD data.
For the contacts during lockdown, we normalize them so that the average number of
daily contacts in each age group is approximately 3.1 as reported in a survey similar
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to POLYMOD conducted in the UK during the first COVID-19 lockdown [47].

Participants Average daily contacts
age group POLYMOD Cyprus POLYMOD Cyprus

before
lockdown

Cyprus
during
lockdown

0-4 660 0 10.21 N/A N/A
5-9 661 0 14.81 N/A N/A
10-14 713 0 18.22 N/A N/A
15-19 685 10 17.58 53.9 3.9
20-29 879 129 13.57 78.81 14.36
30-39 815 184 14.14 55.65 8.03
40-49 908 141 13.83 60.43 11.13
50-59 906 71 12.30 61.54 6.15
60-69 728 32 9.21 29.72 4.5
70+ 270 11 6.89 9.27 3.36

Table 5.4: Average number of participants and average number of daily contacts per age group in
the POLYMOD and the Cyprus datasets. For the Cyprus data we consider contacts before and
during the lockdown. Note that the participants in the Cyprus dataset are 18 years old and above.
We assume that the 18 and 19 years old participants have similar contacts as the 15-19 years old
age group in the POLYMOD dataset.

To generate a synthetic human proximity network with the dynamic-S1
corresponding to a single period (workplace, elsewhere or home) before or during
the lockdown, we configure the model as follows. First, we assume that all 578
participants are present in all periods, therefore we set the number of nodes N = 578
in all cases. The number of time slots τ is set according to the duration of the
period, which is the average of the hours that the participants reported for the
period. We assume that the network time-slots have a duration of five minutes,
thus τ = 84 (7 hours) at work, τ = 12 (1 hour) elsewhere and τ = 144 (12 hours) at
home before the lockdown, while τ = 24 (2 hours) at work, τ = 0 elsewhere and
τ = 252 (21 hours) at home during the lockdown. The average degree is assumed the
same in all snapshots in the period k̄t = κ̄, t = 1, . . . , τ . The hidden degrees per slot
κi of each node i = 1, . . . , N and the temperature T are tuned simultaneously for
each period. From Eq. (5.48), the hidden degree per slot κi of node i can be estimated
as κi = k̄aggr(κi)/α, where α = τT/Γ(1 + T ) and k̄aggr(κi) is the node’s expected
time-aggregated degree, i.e., the node’s reported number of contacts in the period in
our case. Hence, we tune the hidden degrees per slot κi and T simultaneously (as
T changes the values of κi change) such that the average time-aggregated degree
k̄aggr in the resulting network is similar to the real average number of contacts in
the period across the participants (see Table 5.5 for the values of T found for each
period). The hidden similarity coordinate θi of each node i is sampled uniformly at
random from 0 to 2π for each period, however, we assume they remain the same
before and during the lockdown.

5.7.0.1 Properties of the synthetic human proximity networks

In this section we compare properties of the synthetic human proximity networks
of each period before the lockdown versus during the lockdown using normalized
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Period T before lockdown T during lockdown
Workplace 0.3 0.2
Elsewhere 0.5 N/A
Home 0.5 0.5

Table 5.5: Temperature T found for each period before and during the lockdown. The procedure
to find these values is described in the text.

contacts. The properties considered in Fig. 5.17 are: i) the time-aggregated degree
distribution, ii) contact duration distribution, iii) intercontact duration distribution
and iv) group size distribution.
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Figure 5.17: Properties of the synthetic human proximity network of normalized contacts for the
home, workplace and elsewhere periods, before and during the lockdown. (a-c) time-aggregated
degree distribution. The sky blue and light salmon triangles correspond to the real time-aggregated
degree distributions in the Cyprus data during and before the lockdown, respectively. The blue
and red solid lines correspond to the synthetic human proximity networks during and before the
lockdown, respectively. The legend in each plot also shows the average time-aggregated degree
in reality and in the synthetic networks. (d-f) contact duration distribution. The blue markers
correspond to the periods during lockdown and the red markers to the periods before the lockdown.
(g-i) same as (d-f) but for the intercontact duration distribution. (j-l) same as (d-f) but for
the group size distribution. See Appendix B.1 for the properties corresponding to the synthetic
networks generated from non-normalized contacts.

In Fig. 5.17 we can see that the dynamic-S1 model reproduces the real time-
aggregated degree distribution of the Cyprus data and the other properties look as
expected in real human proximity networks. However, in Appendix B.1 we see that in
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the networks generated from non-normalized contacts, giant connected components
form in the elsewhere and workplace periods before lockdown. Whereas, with the
normalized contacts only giant connected components form in the workplace period
before the lockdown and smaller groups form in all periods. This means that the
model can also be used to identify overestimation of contacts in the survey data,
since real human proximity network snapshots are sparse without giant connected
components [9, 94, 101].

5.7.1 SEIR model simulations

In this section we simulate the spread of COVID-19 among the 578 participants of
the Cyprus data based on their reported contacts before and during the lockdown.
To this end, we generate a synthetic human proximity network from the normalized
contacts and also from non-normalized contacts with the dynamic-S1 model. Each
network consists of 15 days before lockdown (from March 9 when the first case was
reported in Cyprus until the start of the lockdown in March 24) and 59 days during
lockdown (from March 24 until the end of the lockdown in May 21). Each day in the
network consists of a work, an elsewhere and a home period. Each period in each
day is generated as described in Section 5.7.

Compartmental models, such as the SEIR model, simplify the modeling of disease
spreading by categorizing a population into compartments. According to the disease
one wishes to model, different compartments may be considered. The SEIR model
consists of the following compartments: the Susceptible compartment represents
individuals that can be infected, the Exposed compartment represents individuals
that have been infected but are not yet infectious, the Infected compartment
represents infected individuals that can infect susceptible individuals and the Removed
compartment represents individuals that have been “removed” from the population
and can no longer be infected or infect others. In the classic compartmental
models, a system of differential equations governs the progress of individuals between
compartments, which for the SEIR model is:

dS

dt
= −α I

N
S

dE

dt
= α

I

N
S − εE

dI

dt
= εE − βI

dR

dt
= βI

(5.54)

where N = S + E + I +R is the total population, α is the infection probability
by which infected individuals infect susceptible individuals in a unit of time, ε is the
probability by which exposed individuals transition to the infected compartment
in a unit of time and β is the recovery probability by which infected individuals
transition to the removed compartment in a unit of time. In the recent literature of
the modeling of the spread of COVID-19, compartmental models have been widely
used as a system of differential equations [15, 27, 33, 83, 111] but also as a dynamic
process that runs on top of a network structure [28, 105]. Network-based epidemic
models are more realistic than the classic compartmental models of differential
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equations, in the sense that infections happen only between infected and susceptible
individuals connected in the network. This is particularly useful to model control
measures that imply a decrease in contacts (social distancing) or constrained contacts
(lockdown) [105].

Here we consider a dynamic SEIR process that runs on top of the synthetic
human proximity networks generated with the dynamic-S1 model. The process
begins with a single node in the infected compartment chosen at random. Then,
in each network snapshot each susceptible node that is connected with an infected
node, becomes exposed with probability α; each exposed node becomes infected with
probability ε and each infected node transitions to the removed compartment with
probability β.

We run 50 dynamic SEIR processes on each synthetic network. We choose a
different source infected node for each run. In all runs we use the same parameters
tuned according to real reported values of the incubation period, the infection
duration and R0 for COVID-19. ε is the inverse of the incubation period of the
disease. Incubation periods between 3 and 6 days on average have been reported [7,
38, 58], we consider 3 days. β is the inverse of the duration of the infection, which
has been reported as 14 days on average for mild cases [73]. Adjusting for the 5
minute time slot duration of the synthetic networks, ε = 5 minutes

3 days = 5 minutes
4320 minutes and

β = 5 minutes
14 days = 5 minutes

20160 minutes . Finally we set the infection probability α according to
real reported values of R0 in Cyprus using the relation R0 = α/β of the classic SEIR
model [86]. We consider R0 = 2.58, 3.26 and 4.01 [84].

In Fig. 5.18 we plot the total cases, the daily new cases and the active infected
cases, averaged over 50 dynamic SEIR processes on the synthetic network of
normalized contacts, for R0 = 2.58, 3.26 and 4.01. We see that the results are
qualitatively similar to the corresponding real trends in [110] from March 9 until
May 21 in Cyprus. In Appendix B.1 we also show results for the synthetic network
of non-normalized contacts, where the results are qualitatively the same, but the
majority of the participants become infected.

In Fig. 5.19 we consider the daily new cases originated at work, elsewhere and
at home, averaged over 50 dynamic SEIR process on the synthetic network of
normalized contacts, for R0 = 2.58, 3.26 and 4.01. We observe that the majority of
the cases originate at work, which is in agreement with the large number of clusters
of COVID-19 cases reported in the workplace throughout Europe and the UK [23],
while the contribution from the periods at home and elsewhere is almost non-existent
on average. In Appendix B.1, we also show similar results for the synthetic network
of non-normalized contacts.

In general, we observe that our approach produces qualitatively similar results to
the real spread of COVID-19 in Cyprus from March 9 until May 21. We have also
observed that the workplace is the main place of infection, perhaps lockdowns or
strict control measures should target the workplace rather than “everywhere”.

The main difference between our work and the studies in Refs. [28, 105] is that the
synthetic human proximity networks that we generate are time-varying, not static,
and are constructed according to a realistic model of human proximity networks.
Further, it has been shown in a real human proximity network of a hospital ward,
that a dynamic SEIR process overestimates the total number of cases when run on
the time-aggregated network rather than on the human proximity network [61]. In
Ref. [61], other representations of the human proximity network were considered, the
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Figure 5.18: Total cases as a function of the number of days, new cases per day and active infected
cases in each day. Results are averages over 50 dynamic SEIR processes on the synthetic network of
normalized contacts. The shaded areas correspond to one standard deviation away from the average.
The vertical red dashed line marks the beginning of the lockdown on day 16. (a-c) R0 = 2.58.
(d-f) R0 = 3.26. (g-i) R0 = 4.01. See Appendix B.1 for results with the synthetic network of
non-normalized contacts.
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Figure 5.19: Daily new cases originated at work (red lines), elsewhere (blue lines) and at home (green
lines). Results are averages over 50 dynamic SEIR processes on the synthetic network of normalized
contacts. The shaded areas correspond to one standard deviation away from the average. The
vertical black line marks the beginning of the lockdown on day 16. (a) R0 = 2.58. (b) R0 = 3.26.
(c) R0 = 4.01. See Appendix B.1 for results with the synthetic network of non-normalized contacts.

time-aggregated network is the second best approximation to the human proximity
network. The best approximation is a network where each pair of nodes i, j is
connected by an edge and the edge weight is sampled from a negative binomial
distribution. This distribution is fitted to the empirical distribution of cumulative
contact durations between individuals belonging to the same groups as i, j. In this
case, the groups are the roles in the hospital: patients, physicians, nurses, ward
assistants and caregivers. This could be a good network choice if one has access to
detailed contact information among individuals and their durations, but this is not
the case in the Cyprus data.
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5.8 Discussion
Despite its simplicity the dynamic-S1 reproduces adequately many of the observed
properties of real proximity networks. At the same time the model is amenable to
mathematical analysis. We have proved here the model’s main properties (Sec. 5.5).
Other properties were studied only via simulations (Sec. 5.3.3) and it would be
interesting in future work to prove those properties as well. We have seen that
network temperature plays a central role in network dynamics, dictating the contact,
inter-contact and weight distributions, the time-aggregated degrees, and the formation
of unique and recurrent components.

The dynamic-S1 may not capture the properties of a real network exactly. For
instance, the aggregated contact, inter-contact and weight distributions may deviate
from pure power laws, may follow power laws with exponential cutoffs, may have
different exponents than exactly 2 + T, 2− T, 1 + T , etc., cf. Fig. 5.6(a). Further, we
have seen that the pairwise inter-contact distributions are on average more skewed
in real networks than in the model. As future work, it would be also interesting to
investigate what mechanisms need to be introduced into the model in order to be
able to capture such variations.

We also note that memory in the dynamic-S1 is induced only via the nodes’
latent variables (κ, θ). Extensions to the model with link persistence, where
connections/disconnections can also be copied from the previous to the next
snapshot [66, 76], would allow additional control over the rate of dynamics, i.e., on
how fast the topology changes from snapshot to snapshot. Further, generalizations of
the model that would allow the nodes’ latent variables (κ, θ) to change over time are
desirable. However, for this purpose, one would first need to find the equations that
realistically describe the motion of nodes in their latent spaces. The dynamic-S1 or
extensions of it may apply to other types of time-varying networks, such as the ones
considered in [50, 82], and constitute the basis of maximum likelihood estimation
methods that infer the node coordinates and their evolution in the latent spaces of
real systems [53]. Taken altogether, our results pave the way towards generative
modeling of temporal networks that simultaneously satisfies simplicity, realism, and
mathematical tractability.
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Chapter 6

Hyperbolic mapping of
human proximity networks

This chapter has been published, with some modifications, in “Scientific
Reports” [88].

In Chapter 5, we have presented the dynamic-S1 model. The model assumes that
each network snapshot is a realization of the S1 model of traditional (non-mobile)
complex networks. The dynamic-S1 reproduces many of the observed characteristics
of human proximity networks, while being mathematically tractable. We have proven
several of the model’s properties in Chapter 5.

In this chapter, we map human proximity networks into hyperbolic spaces founded
on the dynamic-S1 model. Specifically, given that the dynamic-S1 can generate
synthetic temporal networks that resemble human proximity networks across a
wide range of structural and dynamical characteristics, can we reverse the synthesis
and map (embed) human proximity networks into the hyperbolic space, in a way
congruent with the model? Would the results of such mapping be meaningful? And
could the obtained maps facilitate applications, such as community detection, routing
on the temporal network, prediction of future links, and prediction of epidemic arrival
times?

Here we provide the affirmative answers to these questions. Our approach is based
on embedding the time-aggregated network of human proximity systems over an
adequately large observation period, using methods developed for traditional complex
networks that are based on the S1 model [32]. In the time-aggregated network, two
nodes are connected if they are connected in at least one network snapshot during
the observation period. We justify this approach theoretically by showing that the
connection probability in the time-aggregated network in the dynamic-S1 model
resembles the connection probability in the S1 model, and explicitly validate it in
synthetic networks. Following this approach, we produce hyperbolic maps of six
different real systems, and show that the obtained maps are meaningful: they can
identify actual node communities, they can facilitate efficient greedy routing on
the temporal network, and they can predict future links with significant precision.
Further, we show that epidemic arrival times in the temporal network are positively
correlated with the hyperbolic distance from the infection sources in the maps.

6.1 Results

6.1.1 Data
We consider the following face-to-face interaction networks from SocioPatterns [97].
(i) A hospital ward in Lyon [107], which corresponds to interactions involving
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patients and healthcare workers during five observation days. (ii) A primary school
in Lyon [102], which corresponds to interactions involving children and teachers
of ten different classes during two days. (iii) A scientific conference in Turin [45],
which corresponds to interactions among conference attendees during two and a half
days. (iv) A high school in Marseilles [64], which corresponds to interactions among
students of nine different classes during five days. And (v) an office building in Saint
Maurice [35], which corresponds to interactions among employees of 12 different
departments during ten days. Each snapshot of these networks corresponds to an
observation interval (time slot) of 20 s, while proximity was recorded if participants
were within 1.5 m in front of each other.

We also consider the Friends & Family Bluetooth-based proximity network [1].
This network corresponds to the proximities among residents of a community adjacent
to a major research university in the US during several observation months. We
consider the data recorded in March 2011. Each snapshot corresponds to an
observation interval of 5 min, while proximity was recorded if participants were
within a radius of 10 m from each other. Thus proximity in this network does not
imply face-to-face interaction. Table 6.1 gives an overview of the data.

Network Days N τ n̄ k̄ k̄aggr T
Hospital 5 75 17376 2.9 0.05 30 0.84

Primary school 2 242 5846 30 0.18 69 0.72
Conference 2.5 113 10618 3.3 0.03 39 0.85
High school 5 327 18179 17 0.06 36 0.61

Office building 10 217 49678 2.8 0.01 39 0.74
Friends & Family 31 112 7317 58 1.5 57 0.48

Table 6.1: Overview of the considered real networks. N is the number of nodes, τ is the total
number of time slots (snapshots), n̄ is the average number of interacting (i.e., non-zero degree)
nodes per snapshot, k̄ is the average node degree per snapshot, k̄aggr is the average degree in the
time-aggregated network formed over the full observation duration τ , and parameter T is the
network temperature used in the dynamic-S1 model to generate synthetic counterparts of the real
systems (see Chapter 5). The table also shows the number of observation days for each network.

6.1.2 Preliminaries
We first provide an overview of the equivalence between the S1 model and random
hyperbolic graphs or H2 model.Then we show that the connection probability in
the time-aggregated network in the dynamic-S1 model, resembles the connection
probability in the S1 model. Based on this equivalence, we then map the time-
aggregated networks of the considered real data to the hyperbolic space using a
recently developed method that is based on the S1 model.

6.1.2.1 S1 model

The S1 model described in Chapter 5, Sec. 5.1 is equivalent to random hyperbolic
graphs, i.e., to the hyperbolic H2 model [55], after transforming the degree variables
κi to radial coordinates ri via

ri = R̂− 2 ln κi
κ0
, (6.1)
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where κ0 is the smallest κi and R̂ = 2 ln [N/(πµκ2
0)] is the radius of the hyperbolic

disk where all nodes reside. After this change of variables, the effective distance
in Chapter 5, Eq. (5.2) becomes χij = e

1
2 (xij−R̂), where xij = ri + rj + 2 ln (∆θij/2)

is approximately the hyperbolic distance between nodes i and j [55]. Therefore, we
can refer to the degree variables κi as “coordinates” and use terms effective distance
and hyperbolic distance interchangeably.

Given the ability of the S1/H2 model to construct synthetic networks that resemble
real networks, several methods have been developed to map real networks into the
hyperbolic plane, i.e., to infer the nodes’ latent coordinates r (or κ) and θ, according
to the model [2, 11, 12, 32, 75, 77]. The hyperbolic maps produced by these methods
have been shown to be meaningful, and have been efficiently used in applications
such as community detection, greedy routing and link prediction [2, 3, 4, 11, 12, 54,
74, 75, 77, 79]. Model-free mapping methods have also been developed [70]. Further,
on a related note, there is a large body of work on embedding both static and
temporal networks into Euclidean spaces, e.g., see Refs. [21, 53, 106], and references
therein. However, no prior work has considered embedding temporal networks into
hyperbolic spaces, which provide a more accurate reflection of the geometry of real
networks [79].

6.1.3 Hyperbolic mapping of human proximity networks
6.1.3.1 Theoretical considerations

Assuming that a sequence of network snapshots Gt, t = 1, . . . , τ , has been generated
by the dynamic-S1, we show below that we can accurately infer the nodes’ latent
coordinates κ, θ from the time-aggregated network, using existing methods that are
based on the S1 model. This is justified by the fact that the connection probability in
the time-aggregated network of the dynamic-S1 resembles the connection probability
in the S1. Indeed, in the time-aggregated network two nodes are connected if they
are connected in at least one of the snapshots. Assuming for simplicity that each
snapshot has the same average degree k̄t = k̄, the connection probability in the
time-aggregated network of the dynamic-S1, is

P (χij) = 1− [1− p(χij)]τ , (6.2)

where p(χij) is given by Eq. (5.1) in Chapter 5. Further, as shown in Chapter 5,
Eq. (5.5.4), the expected degree of a node in the time-aggregated network, κ̃, is
related to the node’s latent degree κ, via

κ̃ = ακ, (6.3)

where α = τT/Γ(1 +T ) for τ � 1, and Γ is the gamma function. Eq. (6.3) is derived
in the thermodynamic limit (N →∞), where there are no cutoffs imposed to node
degrees by the network size. We can therefore rewrite (6.2) as

P (χ̃ij) = 1− [1− p(αχ̃ij)]τ

= 1−
1 + 1

τ

[
Γ(1 + T )

χ̃ij

]1/T

−τ

≈ 1− e−
[

Γ(1+T )
χ̃ij

]1/T

,

(6.4)

(6.5)
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where
χ̃ij = R∆θij

µ̃κ̃iκ̃j
= χij

α
(6.6)

is the effective distance between nodes i and j in the time-aggregated network,
while µ̃ = µ/α. The exponential approximation in (6.5) holds for sufficiently large
τ . We also note that since T ∈ (0, 1), 0.88 < Γ(1 + T ) < 1. At large distances,
χ̃ij � Γ(1 + T ), we can use the approximation e−x ≈ 1− x in (6.5), to write

P (χ̃ij) ≈
C

χ̃
1/T
ij

∝ 1
χ̃

1/T
ij

≈ p(χ̃ij), (6.7)

where p(x) is given by (5.1), while C = Γ(1 + T )1/T , 0.56 < C < 1. At small
distances, χ̃ij � Γ(1 + T ), the exponential in (6.5) is much smaller than one, and
we can write P (χ̃ij) ≈ 1 ≈ p(χ̃ij). In other words, at both small and large effective
distances χ̃ij, the connection probability in the time-aggregated network resembles
the Fermi-Dirac connection probability in the S1 model. Fig. 6.1 illustrates this effect
in the time-aggregated networks of synthetic counterparts of real systems, whose
snapshots can also have different average degrees k̄t, t = 1, . . . , τ (see Chapter 5,
Fig. 5.3).

Given this equivalence, in Fig. 6.2 we apply Mercator, a recently developed
embedding method based on the S1 model [32], to the time-aggregated network of
the synthetic counterparts of the hospital and primary school. Mercator infers the
nodes’ coordinates (κ̃, θ) from the time-aggregated network (see Sec. 6.3.1), and
from κ̃ we estimate κ using (6.3). We also modified Mercator to use the connection
probability in Eq. (6.4) instead of the connection probability in Eq. (5.1) in Chapter 5
(see Appendix C.7). Fig. 6.2 shows that the two versions of Mercator perform similarly,
inferring the nodes’ latent coordinates remarkably well. Similar results hold for the
synthetic counterparts of the rest of the real systems (Appendix C.2). In the rest of
the chapter, we use the original version of Mercator as its implementation is simpler
and does not require knowledge of parameter τ .
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Figure 6.1: Connection probability in the time-aggregated network versus Fermi-Dirac connection
probability. The results correspond to the synthetic counterparts of the hospital, high school and
Friends & Family, constructed using the dynamic-S1 model as described in Chapter 5, Sec. 5.3.2.
The blue circles show the empirical connection probabilities. The solid red and dashed black lines
correspond to Eq. (5.1) in Chapter 5 and Eq. (6.4), respectively. The values of parameters T and
τ in each case are as shown in Table 6.1, while α = τT /Γ(1 + T ). Similar results hold for the
counterparts of the rest of the real systems (see Appendix C.1).

6.1.3.2 Aggregation interval

As the aggregation interval τ increases, the time-aggregated network becomes denser,
eventually turning into a fully connected network. This can be seen in (6.2), where
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Figure 6.2: Inference of latent coordinates (κ, θ) with the original and modified versions of Mercator.
The top row corresponds to a synthetic counterpart of the hospital, while the bottom row to
a synthetic counterpart of the primary school. Both versions of Mercator are applied to the
corresponding time-aggregated network formed over the full duration τ in Table 6.1. (a and d)
Inferred versus real θ. (b and e) Inferred versus real κ. For each node, κinferred is estimated as
κinferred = κ̃/α, where κ̃ is the node’s inferred latent degree in the time-aggregated network, while
α = τT /Γ(1 + T ), with τ as in Table 6.1 and T as inferred by each version of Mercator. (c and f)
Connection probability as a function of the effective distance χ̃ in the time-aggregated network
computed using the inferred coordinates (κ̃, θ). The solid grey and dashed black lines correspond
to Eq. (5.1) in Chapter 5 with temperature T as inferred by each version of Mercator. For the two
networks, the original version estimates T = 0.57, the modified version estimates T = 0.78 and
0.77, while the actual values are T = 0.84 and 0.72. In general, the modified version estimates
values of T closer to the actual values. However, both versions of Mercator perform remarkably
well at estimating the nodes’ latent coordinates (κ, θ). We note that due to rotational symmetry of
the model, the inferred angles can be globally shifted compared to the real angles by any value in
[0, 2π].

irrespective of network size, at τ → ∞, P (χij) → 1, ∀i, j. Further, at τ → ∞,
α→∞, and by (6.6) χ̃ij → 0, ∀i, j. Clearly, no meaningful inference can be made
in a fully connected network as all nodes “look the same”. Thus for an accurate
inference of the nodes’ coordinates the interval τ has to be sufficiently small such
that the corresponding time-aggregated network is not too dense. On the other hand,
for intervals τ that are not sufficiently large there may not be enough data to allow
accurate inference, as network snapshots are often very sparse in human proximity
systems, consisting of only a fraction of nodes (Table 6.1). This effect is illustrated in
Fig. 6.3, where we quantify the difference between real and inferred coordinates as a
function of τ in a synthetic counterpart of the primary school. We see in Fig. 6.3 that
there is a wide range of adequately large τ values, e.g., 500 < τ < 10000, where the
accuracy of inference for both κ and θ is simultaneously high, while as τ becomes too
large or too small accuracy deteriorates. Similar results hold for the counterparts of
the rest of the considered real systems (Appendix C.8). The exact range of τ values
where inference accuracy is high depends on the system’s parameters, e.g., sparser
networks (lower average snapshot degree) allow aggregation over longer intervals,
as it takes longer for the time-aggregated network to become too dense. Further,
our results with the synthetic counterparts suggest that daily aggregation intervals
should be sufficient for accurate inference in most cases. Indeed, in this chapter we
embed the time-aggregated networks of the considered real systems formed over the
full observation durations τ in Table 6.1, as well as corresponding time-aggregated
networks formed over individual observation days, obtaining in both cases meaningful
results.
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Figure 6.3: Inference accuracy vs. aggregation interval. The results correspond to a synthetic
counterpart of the primary school constructed using the dynamic-S1 model. (a) Average
difference between the inferred and real latent degrees as a function of the aggregation interval
τ , Dκ(τ) =

∑N
i=1 |κiinferred − κireal|/N , where κiinferred (κireal) is the inferred (real) latent degree of

node i. (b) Same as in (a) but for the average difference between the inferred and real angular
coordinates, Dθ(τ) =

∑N
i=1 |θiinferred − θireal|/N . Before computing Dθ(τ), the inferred angles are

globally shifted such that the sum of the squared distances between real and inferred angles is
minimized (to this end, we apply a Procrustean rotation [89], see Appendix C.8 for details). (c)
Density of the time-aggregated network as a function of τ , d(τ) = 2L/[N(N − 1)], where L is the
number of links in the network. The vertical dashed lines indicate the interval 500 ≤ τ ≤ 10000. In
this interval, Dκ(τ) < 0.2, Dθ(τ) < 0.2, and 0.06 < d(τ) < 0.33.

6.1.3.3 Hyperbolic maps of real systems

In Fig. 6.4 we apply Mercator to the time-aggregated network of the real networks
in Table 6.1 and visualize the obtained hyperbolic maps and the corresponding
connection probabilities. We see that the embeddings are meaningful, as we can
identify in them actual node communities that correspond to groups of nodes located
close to each other in the angular similarity space. These communities reflect the
organization of students and teachers into classes (Figs. 6.4b and 6.4c), employees
into departments (Fig. 6.4d), while no communities can be identified in the hospital
(Fig. 6.4a). In all cases, we see a good match between empirical and theoretical
connection probabilities (Figs. 6.4e-h). Next, we turn our attention to greedy routing.

6.1.4 Human-to-human greedy routing

A problem of significant interest in mobile networking is how to efficiently route
data in opportunistic networks, like human proximity systems, where the mobility of
nodes creates contact opportunities among nodes that can be used to connect parts
of the network that are otherwise disconnected [16, 20, 44, 48]. Motivated by this
problem, and by the remarkable efficiency of hyperbolic greedy routing in traditional
complex networks [4, 12, 74], we investigate here if hyperbolic greedy routing can
facilitate navigation in human proximity systems. To this end, we consider the
following simplest greedy routing process, which performs routing on the temporal
network using the coordinates inferred from the time-aggregated network.

Human-to-human greedy routing (H2H-GR). In H2H-GR, a node’s address is its
coordinates (κ̃, θ), and each node knows its own address, the addresses of its neighbors
(nodes currently within proximity range), and the destination address written in
the packet. A node holding the packet (carrier) forwards the packet to its neighbor
with the smallest effective distance to the destination, but only if that distance is
smaller than the distance between the carrier and the destination. Otherwise, or if
the carrier currently has no neighbors, the carrier keeps the packet. Clearly, a carrier
delivers the packet to the destination if the latter is its neighbor. We note that there
are no routing loops in H2H-GR, i.e., no node receives the same packet twice. Indeed,
consider for instance a packet from a node i0 to a node in, which has followed the
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Figure 6.4: Hyperbolic embeddings of human proximity networks. (a-d) Hyperbolic maps of the
time-aggregated networks of the hospital, primary school, high school and office building. In
each case we consider the time-aggregated network formed over the full observation duration τ
shown in Table 6.1. The nodes are positioned according to their inferred hyperbolic coordinates
(r, θ) in the time-aggregated network [the radial coordinates r are computed using (6.1)]. The
nodes are colored according to group membership information available in the metadata of each
network. In the hospital, the nodes are administrative staff (Admin), medical doctors (Med),
nurses and nurses’ aides (Paramed), and patients (Patient). In the primary school, the nodes
are teachers and students of the following classes: 1st grade (1A, 1B), 2nd grade (2A, 2B), 3rd
grade (3A, 3B), 4th grade (4A, 4B), and 5th grade (5A, 5B). In the high school, the nodes are
students of nine different classes with the following specializations: biology (2BIO1, 2BIO2, 2BIO3),
mathematics and physics (MP, MP*1, MP*2), physics and chemistry (PC, PC*), and engineering
studies (PSI*). In the office building, the nodes are employees working in different departments
such as scientific direction (DISQ), chronic diseases and traumatisms (DMCT), department of
health and environment (DSE), human resources (SRH), and logistics (SFLE). (e-h) Corresponding
empirical connection probabilities as a function of the effective distance χ̃. The pink dashed lines
correspond to (5.1) with temperatures T as inferred by Mercator, T = 0.99, 0.47, 0.40 and 0.64,
respectively. The maps for the conference and Friends & Family can be found in Appendix C.3.
Daily hyperbolic maps for each real system can be found in Appendix C.5.

path {i0, i1, i2, . . . , in−1, in}. This means that χ̃i0in > χ̃i1in > χ̃i2in > . . . > χ̃in−1in ,
where χ̃ikin is the effective distance between nodes ik and in. A node ik in the path
never forwards the packet to a node il with l < k, i.e., to a node that has seen the
packet before, because χ̃ilin > χ̃ikin .

For each network in Table 6.1, we simulate H2H-GR in one of its observation days.
We consider the following two cases: i) H2H-GR that uses the nodes’ coordinates
inferred from the time-aggregated network of the considered day (current coordinates);
and ii) H2H-GR that uses the nodes’ coordinates inferred from the time-aggregated
network of the previous day (previous coordinates). In the time-aggregated network
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of a day, two nodes are connected if they are connected in at least one network
snapshot in the day. We compare these two cases to a baseline random routing
strategy (H2H-RR), where the carrier first determines the set of its neighbors that
have never received the packet before, and then forwards the packet to one of these
neighbors at random. If the destination is a neighbor the carrier forwards the packet
to it. The carrier keeps the packet if it currently has no neighbors, or if all of its
neighbors have received the packet before. Thus, there are no routing loops in
H2H-RR either.

Performance metrics. We evaluate the performance of the algorithms according
to the following two metrics: i) the percentage of successful paths, ps, which is the
proportion of paths that reach their destinations by the end of the considered day;
and ii) the average stretch over the successful paths, s̄. We define the stretch as the
ratio of the hop-lengths of the paths found by the algorithms to the corresponding
shortest time-respecting paths [43] in the network.

The results are shown in Table 6.2. We see that H2H-GR that uses the current
coordinates significantly outperforms H2H-RR in both success ratio and stretch.
The improvement can be quite significant. For instance, in the primary school the
success ratio increases from 34% to 82%, while the average stretch decreases from
24.9 to 3.9. Similarly, in the hospital the success ratio increases from 38% to 80%,
while the average stretch decreases from 7 to 2.2. These results show that hyperbolic
greedy routing can significantly improve navigation. However, the success ratio
decreases considerably if H2H-GR uses the previous coordinates. This suggests that
the node coordinates change to a considerable extend from one day to the next. In
Appendix C.5, we verify that this is indeed the case. Nevertheless, H2H-GR that
uses the previous coordinates still outperforms H2H-RR with respect to success ratio,
while achieving significantly lower stretch similar to the stretch with the current
coordinates (Table 6.2).

Table 6.3 shows the same results for the synthetic counterparts of the real systems,
where we can make qualitatively similar observations. Further, we see that H2H-GR
achieves higher success ratios using the inferred coordinates in the counterparts
compared to the real systems. This is not surprising as the counterparts are by
construction maximally congruent with the assumed geometric model (dynamic-S1).
Also, H2H-GR that uses the previous coordinates maintains high success ratios in the
counterparts. This is expected, as the coordinates in the counterparts do not change
over time. Thus the coordinates inferred from the time-aggregated network of the
previous day are quite similar (but not exactly the same) to the ones inferred from the
time-aggregated network of the day where routing is performed (see Appendix C.4).

The metrics in Tables 6.2 and 6.3 are computed across all source-destination
pairs. In Figs. 6.5 and 6.6 we also compute these metrics as a function of the effective
distance between the source-destination pairs. We see that H2H-GR that uses the
current coordinates achieves high success ratios, approaching 100%, as the effective
distance between the pairs decreases. As the effective distance between the pairs
increases, the success ratio decreases. The average stretch for successful H2H-GR
paths is always low.

H2H-RR also achieves considerably high success ratios for pairs separated by small
distances (Fig. 6.5). This is because, even though packets in H2H-RR are forwarded
to neighbors at random, the neighbors are not random nodes but nodes closer to the
carriers in the hyperbolic space. Thus, packets between pairs separated by smaller
distances have higher chances of finding their destinations. However, the stretch of
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Real network H2H-GR (current
coordinates)

H2H-GR (previous
coordinates)

H2H-RR

Hospital ps = 0.80, s̄ = 2.2 ps = 0.47, s̄ = 2.0 ps = 0.38, s̄ = 7.0
Primary school ps = 0.82, s̄ = 3.9 ps = 0.65, s̄ = 3.6 ps = 0.34, s̄ =

24.9
Conference ps = 0.70, s̄ = 2.2 ps = 0.35, s̄ = 2.0 ps = 0.29, s̄ = 7.9
High school ps = 0.29, s̄ = 2.0 ps = 0.13, s̄ = 1.9 ps = 0.07, s̄ = 5.9
Office building ps = 0.15, s̄ = 1.4 ps = 0.10, s̄ = 1.4 ps = 0.06, s̄ = 2.5
Friends & Family ps = 0.45, s̄ = 1.8 ps = 0.31, s̄ = 2.0 ps = 0.21, s̄ = 5.3

Table 6.2: Success ratio ps and average stretch s̄ of H2H-GR and H2H-RR in real networks.
H2H-GR uses the coordinates inferred either from the time-aggregated network of the considered
day where routing is performed (current coordinates); or from the time-aggregated network of
the previous day (previous coordinates). The considered days in the hospital, primary school,
conference, high school and office building are observation days 5, 2, 3, 5 and 10, respectively. In
Friends & Family, the considered day is the 31st of March 2011. For a fair comparison with H2H-GR
that uses the previous coordinates, we ignore during all routing processes the nodes that exist in the
considered day but not in the previous day, since for such nodes we cannot infer their coordinates
from the previous day. The percentage of such nodes is 17%, 3%, 7%, 6%, 14% and 3% for the
hospital, primary school, conference, high school, office building and Friends & Family, respectively.
In all cases, routing is performed among all possible source-destination pairs in the considered day
that also exist in the previous day.

Synthetic network H2H-GR (current
coordinates)

H2H-GR (previous
coordinates)

H2H-RR

Hospital ps = 0.92, s̄ = 2.2 ps = 0.78, s̄ = 2.2 ps = 0.42, s̄ = 9.2
Primary school ps = 0.98, s̄ = 3.7 ps = 0.97, s̄ = 3.8 ps = 0.53, s̄ =

33.9
Conference ps = 0.85, s̄ = 2.4 ps = 0.70, s̄ = 2.4 ps = 0.31, s̄ = 9.8
High school ps = 0.72, s̄ = 2.7 ps = 0.59, s̄ = 2.4 ps = 0.11, s̄ = 7.8
Office building ps = 0.26, s̄ = 1.5 ps = 0.17, s̄ = 1.5 ps = 0.06, s̄ = 3.0
Friends & Family ps = 0.82, s̄ = 2.2 ps = 0.70, s̄ = 2.3 ps = 0.23, s̄ = 5.4

Table 6.3: Same as in Table 6.2 but for the synthetic counterparts of the real systems constructed
with the dynamic-S1 model. The results in each case correspond to one temporal network realization,
while H2H-GR uses inferred coordinates as in Table 6.2.

successful paths in H2H-RR is quite high (Fig. 6.6). Further, we see that in real
networks the success ratio of H2H-GR that uses the previous coordinates resembles
in most cases the one of H2H-RR (Figs. 6.5a-c and Appendix C.4). However, the
stretch in H2H-GR is always significantly lower than in H2H-RR (Figs. 6.6a-c and
Appendix C.4).

Taken altogether, these results show that hyperbolic greedy routing can facilitate
efficient navigation in human proximity networks. The success ratio for pairs
separated by large effective distances can be low (Fig. 6.5). However, it is possible
that more sophisticated algorithms than the one considered here could improve the
success ratio for such pairs without significantly sacrificing stretch. Further, using
coordinates from past embeddings decreases the success ratio. Even though the
average stretch remains low, this observation suggests that the evolution of the nodes’
coordinates should also be taken into account. Such investigations are beyond the
scope of this thesis. Finally, we note that in Appendix C.4, we consider H2H-GR
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Figure 6.5: Success ratio ps of H2H-GR and H2H-RR as a function of the effective distance χ̃
between source-destination pairs. The top row corresponds to the results of the hospital, primary
school and conference in Table 6.2, while the bottom row to the results of their synthetic counterparts
in Table 6.3. The success ratio for H2H-RR and H2H-GR that uses the previous coordinates is
shown as a function of the effective distance between the pairs in the previous day. Similar results
hold for the other real networks and their synthetic counterparts (Appendix C.4).
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Figure 6.6: Same as in Fig. 6.5 but for the average stretch s̄. Similar results hold for the other real
networks and their synthetic counterparts (Appendix C.4).

that uses only the angular similarity distances among the nodes, and find that it
performs worse than H2H-GR that uses the effective distances. This means that
in addition to node similarities, node expected degrees (or popularities [79]) also
matter in H2H-GR, even though the distribution of node degrees in human proximity
systems is quite homogeneous [78].

6.1.5 Link prediction

In this section, we turn our attention to link prediction. We want to see how well we
can predict if two nodes are connected in the time-aggregated network of a day, if we
know the effective distances among the nodes in the previous day. To this end, for
each pair of nodes i, j in the previous day that is also present in the day of interest,
we assign a score sij = 1/χ̃ij, where χ̃ij is the inferred effective distance between i
and j in the time-aggregated network of the previous day. The higher the sij, the
higher is the likelihood that i and j are connected in the day of interest. We call this
approach geometric. To quantify the quality of link prediction, we use two standard
metrics: (i) the Area Under the Receiver Operating Characteristic curve (AUROC);
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and (ii) the Area Under the Precision-Recall curve (AUPR) [91]. These metrics are
described below.

The AUROC represents the probability that a randomly selected connected pair
of nodes is given a higher score than a randomly selected disconnected pair of nodes
in the day of interest. The degree to which the AUROC exceeds 0.5 indicates how
much better the method performs than pure chance. As the name suggests, the
AUROC is equal to the total area under the Receiver Operating Characteristic (ROC)
curve. To compute the ROC curve, we order the pairs of nodes in the descending
order of their scores, from the largest sij to the smallest sij , and consider each score
to be a threshold. Then, for each threshold we calculate the fraction of connected
pairs that are above the threshold (i.e., the True Positive Rate TPR) and the fraction
of disconnected pairs that are above the threshold (i.e., the False Positive Rate
FPR). Each point on the ROC curve gives the TPR and FPR for the corresponding
threshold. When representing the TPR in front of the FPR, a totally random guess
would result in a straight line along the diagonal y = x, while the degree by which
the ROC curve lies above the diagonal indicates how much better the algorithm
performs than pure chance. AUROC = 1 means a perfect classification (ordering) of
the pairs, where the connected pairs are placed in the top of the ordered list.

The AUPR represents how accurately the method can classify pairs of nodes
as connected and disconnected based on their scores. It is equal to the total area
under the Precision-Recall (PR) curve. To compute the PR curve, we again order
the pairs of nodes in the descending order of their scores, and consider each score
to be a threshold. Then, for each threshold we calculate the TPR, which is called
Recall, and the Precision, which is the fraction of pairs above the threshold that
are connected. Each point on the PR curve gives the Precision and Recall for the
corresponding threshold. A random guess corresponds to a straight line parallel
to the Recall axis at the level where Precision equals the ratio of the number of
connected pairs to the total number of pairs. The higher the AUPR the better the
method is, while a perfect classifier yields AUPR = 1.

The results for the considered real networks and their synthetic counterparts are
shown in Table 6.4. The corresponding ROC and PR curves are shown in Fig. 6.7.
We see that geometric link prediction significantly outperforms chance in all cases.
These results constitute another validation that the embeddings are meaningful, and
illustrate that they have significant predictive power. As can be seen in Table 6.4
and Fig. 6.7, link prediction is more accurate in the synthetic counterparts. This is
again expected since the counterparts are by construction maximally congruent with
the underlying geometric space, while the node coordinates in them do not change
over time.

We also compute the same metrics as in Table 6.4 but for a simple heuristic,
where the score sij between two nodes i and j is the number of common neighbors
they have in the time-aggregated network of the previous day (CN approach). The
results are shown in Table 6.5. Interestingly, we see that the performance of the
geometric and CN approaches is quite similar in real networks, suggesting that
the latter is a good heuristic for link prediction in human proximity systems. The
performance of the two approaches is also positively correlated in the synthetic
counterparts (Tables 6.4 and 6.5). This is expected since the smaller the effective
distance between two nodes the larger is the expected number of common neighbors
the nodes have. However, as can be seen in Tables 6.4 and 6.5, in the counterparts
the geometric approach performs better than the CN approach. This suggests that
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the performance of the former could be further improved in real systems, if more
accurate predictions of the node coordinates in the period of interest could be made.

Network AUROC
real

AUPR
real

AUROC
chance

AUPR
chance

AUROC
synthetic

AUPR
synthetic

Hospital 0.78 0.70 0.5 0.43 0.90 0.77
Primary
school

0.81 0.62 0.5 0.20 0.87 0.71

Confer-
ence

0.66 0.34 0.5 0.22 0.88 0.62

High
school

0.89 0.40 0.5 0.05 0.94 0.59

Office
building

0.71 0.12 0.5 0.05 0.90 0.41

Friends &
Family

0.86 0.60 0.5 0.10 0.93 0.72

Table 6.4: AUROC and AUPR for geometric link prediction in real networks and their synthetic
counterparts. The day of interest is day 3 in the hospital and day 2 in the rest of the networks.
Geometric link prediction uses the effective distances among the nodes inferred from the time-
aggregated network of the previous day. “AUPR chance” corresponds to link prediction based on
pure chance in the real networks. It equals the ratio of the number of connected pairs to the total
number of pairs in the time-aggregated network of the day of interest. AUPR chance values for the
synthetic counterparts are similar as in the real networks and not shown for brevity.
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Figure 6.7: ROC and PR curves for geometric link prediction in real networks and their synthetic
counterparts. (a-f) show the ROC curves, while (g-l) the PR curves, corresponding to the results
in Table 6.4. The dashed black lines correspond to link prediction based on chance; these lines in
(g-l) correspond to the AUPR chance values in Table 6.4.
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Network AUROC real AUPR real AUROC syn-
thetic

AUPR syn-
thetic

Hospital 0.75 0.79 0.85 0.69
Primary
school

0.79 0.52 0.84 0.62

Conference 0.67 0.37 0.85 0.57
High school 0.88 0.44 0.89 0.52
Office building 0.73 0.10 0.86 0.35
Friends &
Family

0.85 0.54 0.89 0.64

Table 6.5: Same as in Table 6.4 but for the CN approach.

6.1.6 Epidemic spreading

Finally, we consider epidemic spreading. Here, predicting the arrival time of
an epidemic is crucial for developing better containment measures for infectious
diseases [14, 34]. In the context of the global air transportation network, Brockmann
and Helbing showed that the epidemic arrival time in a country can be well predicted
by the effective distance between the country and the infection source country [14].
The effective distance between two countries is defined as the length of the shortest
weighted path connecting the two countries in the air transportation network, where
the weight of a link is a decreasing function of the air traffic between the endpoints
of the link [14].

In a similar vein, here we show that in human proximity networks, the epidemic
arrival time, i.e., the time slot at which a node becomes infected, is positively
correlated with the hyperbolic distance between the node and the infected source node
in the time-aggregated network. [We note that while in Ref. [14] the effective distances
are directly defined by observable (weighted) path lengths, the effective distances
in our case are defined by the nodes’ latent coordinates that manifest themselves
indirectly via the nodes’ connections and disconnections in the (unweighted) time-
aggregated network.] To this end, we consider the Susceptible-Infected (SI) epidemic
spreading model [52]. In the SI, each node can be in one of two states, susceptible
(S) or infected (I). At any time slot infected nodes infect susceptible nodes with
whom they are within proximity range, with probability α. Thus, the transition of
states is S→I. To simulate the SI process on temporal networks we use the dynamic
SI implementation of the Network Diffusion library [90].

Figs. 6.8 and 6.9 show the results for the considered real networks and their
synthetic counterparts, respectively. We see that the epidemic arrival times are
significantly correlated with the hyperbolic distance from the infected source node.
The correlation in each case is measured in terms of Spearman’s rank correlation
coefficient ρ (see Sec. 6.3.2).

Fig. 6.10 shows the spread of a single SI process during one day in each hyperbolic
map of the real networks. In each network we divide the time slots in the day into
6 period of equal duration and color the nodes according to the period when they
became infected. In the primary school and high school networks it is particularly
clear that the infection first spreads within the community of the source infected
node and then proceeds to infect adjacent communities.

These results indicate that hyperbolic embedding could provide a new perspective
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for understanding and predicting the behavior of epidemic spreading in human
proximity systems. We leave further explorations for future work.
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Figure 6.8: Average infection time slot as a function of the hyperbolic distance from the infected
source node in real networks. In each case we consider the inferred hyperbolic distances in the
time-aggregated network formed over the full observation duration. The hyperbolic distance is
binned into bins of size δ = 1 and the plots show the average infection time slot for nodes whose
hyperbolic distance from the source node falls within each bin. The shaded area identifies the
region corresponding to one standard deviation away from the average. Bins with less than 5
samples are ignored. The results are averaged over 10 simulated SI processes. Each process starts
with a different infected source node selected at random, while the infection probability per time
slot is α = 0.05. Each plot indicates the average Spearman rank correlation coefficient ρ between
the infection time slot and the hyperbolic distance across the 10 SI processes. In these plots we
consider the hyperbolic distance instead of the equivalent effective distance χ̃, as the former is more
convenient for binning purposes.
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Figure 6.9: Same as in Fig. 6.8 but for the synthetic counterparts (using inferred hyperbolic
distances).
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Figure 6.10: Evolution of the SI process in the hyperbolic embeddings of the real human proximity
networks. (a) Hospital, (b) Primary School, (c) Conference, (d) High School, (e) Office Building,
(f) Friends & Family. The nodes are positioned according to their inferred hyperbolic coordinates
as in Fig. 6.4 and Appendix C.3. A single SI process is simulated on each network during the first
day of observation with a single source infected node (marked with a red outline). The time slots
considered in the SI process of each network are divided into six periods of equal duration and each
period is assigned a different color. Nodes are colored according to the period when they became
infected. The nodes were not infected are colored with a shaded gray color.

6.2 Discussion
Individual snapshots of human proximity networks are often very sparse, consisting
of a small number of interacting nodes. Nevertheless, we have shown that meaningful
hyperbolic embeddings of such systems are still possible. Our approach is based
on embedding the time-aggregated network of such systems over an adequately
large observation period, using mapping methods developed for traditional complex
networks. We have justified this approach by showing that the connection probability
in the time-aggregated network is compatible with the Fermi-Dirac connection
probability in random hyperbolic graphs, on which existing embedding methods are
based. From an applications’ perspective, we have shown that the hyperbolic maps
of real proximity systems can be used to identify communities, facilitate efficient
greedy routing on the temporal network, and predict future links. Further, we have
shown that epidemic arrival times in the temporal network are positively correlated
with the distance from the infection sources in the maps. Overall, our work opens
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the door for a geometric description of human proximity systems.

6.3 Methods

6.3.1 Mercator
Mercator [32] combines the Laplacian Eigenmaps (LE) approach of Ref. [70] with
maximum likelihood estimation (MLE) to produce fast and accurate embeddings.
It can embed networks with arbitrary degree distributions. In a nutshell, Mercator
takes as input the network’s adjacency matrix. It infers the nodes’ latent degrees
(κ̃) using the nodes’ observed degrees in the network and the connection probability
in the S1 model. To infer the nodes’ angular coordinates (θ), Mercator first utilizes
the LE approach adjusted to the S1 model, in order to determine initial angular
coordinates for the nodes. These initial angular coordinates are then refined using
MLE, which adjusts the angular coordinates by maximizing the probability that the
given network is produced by the S1 model. Mercator also estimates the value of
the temperature parameter T . The code implementing Mercator is made publicly
available by the authors of [32] at https://github.com/networkgeometry/mercator.
We have used the code as is without any modifications.

We also considered a modified version of Mercator that replaces the connection
probability of the S1 model in Eq. (5.1), Chapter 5 with the connection probability
in Eq. (6.4). This modification requires several changes to the original Mercator
implementation that we describe in Appendix C.7.

6.3.2 Epidemic arrival time and hyperbolic distance
correlation

To quantify the correlation between the time slot at which a node becomes infected
and its hyperbolic distance from the infected source node, we use Spearman’s rank
correlation coefficient ρ [98]. Formally, given n values Xi, Yi, the values are converted
to ranks rgXi , rgYi , and Spearman’s ρ is computed as

ρ = cov(rgX , rgY )
σrgXσrgY

, (6.8)

where cov(rgX , rgY ) is the covariance of the rank variables, while σrgX , σrgY are the
standard deviations of the rank variables. Spearman’s ρ takes values between −1
and 1, and assesses monotonic relationships. ρ = 1 (ρ = −1) occurs when there is a
perfect monotonic increasing (decreasing) relationship between variables X and Y ,
while ρ = 0 indicates that there is no tendency for Y to either increase or decrease
when X increases.
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Chapter 7

Conclusions
In this thesis we uncovered mechanisms responsible for the observed properties of
real human proximity networks, including the puzzling recurrent formation of groups
of the same people. In Chapter 4, we have shown that these groups can be formed by
modeling human motion patterns with motion equations akin to molecular dynamics
in a model of mobile agents. In the model, hidden similarities among the agents are
the forces that direct their motion towards each other and determine the duration of
their interactions. In this regard, similar techniques from physics could shed further
insights about the dynamics of human proximity networks, for example what are the
motion equations that govern the motion of the agents in the latent space? In other
words, can social influence [57] (agents becoming more similar or dissimilar due to
their interactions in the physical space) be modeled with already known motion
equations? Another direction is extending the model with the addition of static
nodes that exist both in the physical and in the latent space that represent locations
rather than people. Can the same properties of these networks be reproduced if we
assume that similar people are attracted to similar locations?

In Chapter 5, we have proposed a minimal latent space model, where a latent
hyperbolic space abstracts the popularity of the nodes as well as the similarities
among them [79]. The model generates network snapshots and in each snapshot
nodes with smaller (larger) effective/hyperbolic distance are more (less) likely to be
connected. This minimal model reproduces the main properties of human proximity
networks as well as the complex formation of recurrent components. The simplicity of
the model allows for mathematical analysis, we have proven three main properties of
the model but other properties could be proven in future work. We have demonstrated
that the model can be used to simulate realistic dynamics processes that run on
generated synthetic human proximity networks and it is simple to use. Further work
can be done in this area, a current hot topic is the spread of diseases transmitted
through close contacts.

Finally, our results with the embedding of real human proximity networks further
indicate that the node coordinates change over time in the hyperbolic space. Thus, a
challenging yet promising task is to identify the stochastic differential equations that
dictate this motion of nodes. Such equations would allow us to make predictions
about the future positions of nodes in their hyperbolic spaces over different timescales.
This, in turn, could allow us to improve the performance of tasks such as greedy
routing and link prediction. This problem is relevant not only for human proximity
systems, but for all complex networks where the hyperbolic node coordinates are
expected to change over time, such as in social networks and the Internet [75].
Another problem is to extend existing hyperbolic embedding methods so that they
can refine the nodes’ coordinates on a snapshot-by-snapshot basis as new snapshots
become available, without having to recompute each time a new embedding from
scratch. Such methods could be based on the idea that a local change in the
system (new connections or disconnections) should involve mostly the neighborhood
(coordinates of the nodes) around the change. For this purpose, techniques based

79



7. Conclusions

on quadtree structures as in Ref. [59] appear promising. Further, one might want
to penalize large displacements based on the idea that the coordinates should be
changing gradually from snapshot to snapshot. To this end, Gaussian transition
models for the coordinates as in Ref. [53] seem appropriate. Methods for dynamic
embedding in hyperbolic spaces should be useful not only for human proximity
systems, but for temporal networks in general.

Taken altogether, our results pave the way towards more realistic modeling of
human proximity networks with minimal models capable of reproducing even non-
trivial social group dynamics, which are crucial for understanding and predicting
the behavior of different fast-evolving processes on the networks. For example,
determining the structural and dynamical properties of the networks that can affect
the spread of diseases and information, is an important task to device more efficient
containment and navigation strategies [1, 9, 16, 24, 41, 42, 44, 48].
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Appendix A

More results with the
force-directed motion model
A.1 Recurrent components

A.1.1 Unique and recurrent components in real and modeled
networks

Figs. A.1-A.4 show the unique and recurrent components in the real datasets and in
corresponding simulated networks with the attractiveness and FDM models. For
the Primary School and High School the results are shown for each activity cycle.
For the Conference the results are shown for the whole duration (all activity cycles),
as there were relatively few recurrent components in each individual activity cycle.
Furthermore, for the Primary School we also show the results if we exclude the
lunch break period in each activity cycle (12pm-2pm) where children of different
classes have lunch in a common place and some children go home to have lunch [102].
Removing this period results in a more uniform pattern of recurrent components
formation (Figs. A.1a,b vs. Figs. A.1c,d).
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Figure A.1: (a, b) Unique and recurrent components found in each cycle of activity in the Primary
School. (c, d) Same as (a, b) but excluding the lunch break period. (e, f) Components found
in a simulation run of the attractiveness model assuming activity cycles of the same durations as
in (a, b). (g, h) Same as (e, f) but for the FDM (Force-dir. Motion) model. All simulations use
the Primary School parameters (Table 4.2 in Sec. 4.3).

Finally, in Fig. A.5 below, we plot the recurrent and unique components formed
in a synthetic network of the Hospital’s first cycle of activity, generated with the
model of Ref. [103] that we described in Section 3.3. To generate the network we use
the following parameters: number of nodes N = 75, number of time slots τ = 1100
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Figure A.2: (a-e) Unique and recurrent components found in each cycle of activity in the High
School. (f-j) Components found in a simulation run of the attractiveness model assuming activity
cycles of the same durations as in (a-e). (k-o) Same as (f-j) but for the FDM (Force-dir. Motion)
model. All simulations use the High School parameters (Table 4.2 in Sec. 4.3).
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Figure A.3: (a) Unique and recurrent components found over the whole duration of the Conference
dataset. (b) Components found in a simulation run of the attractiveness model with the same
duration as in (a). (c) Same as (b) but for the FDM (Force-dir. Motion) model. All simulations
use the Conference parameters (Table 4.2 in Sec. 4.3).
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Figure A.4: (a) Unique and recurrent components found over the whole duration of the MIT Social
Evolution dataset. (b) Components found in a simulation run of the attractiveness model with
the same duration as in (a). (c) Same as (b) but for the FDM (Force-dir. Motion) model. All
simulations use the MIT Social Evolution parameters (Table 4.2 in Sec. 4.3).

and parameter λ = 0.64, which we tuned to match the average number of interacting
agents per time slot.

The mechanism used to form groups in this model also fails to form recurrent
components in abundance, because groups are formed or grown randomly: in each
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snapshot the model selects a random isolated node to connect to another random
isolated node or to a randomly selected group.
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Figure A.5: Unique and recurrent components found in a synthetic network corresponding to the
first cycle of activity in the Hospital. The network was generated with the model of Ref. [103],
described in Section 3.3.

A.2 Other properties of real versus modeled
networks

In Figs. A.6- A.9 we the properties described in Sec. 3.2 between the real networks
and the corresponding simulated networks with the FDM model. We observe a good
agreement between the model and reality, except for the deviation observed in the
shortest time-respecting paths between the Conference and the model (Fig. A.8h).
This is not due to the attraction forces in the FDM, since as we see in Fig. A.8h
the attractiveness model also yields similar results to the FDM. In fact, we observe
that this distribution is also very different between the Conference and the other
datasets—as can be seen, in the Conference there are significantly longer paths.
This difference might be due to the fact that interactions are less structured in this
dataset, in the sense that participants move at will between different areas such as
conference rooms, coffee break areas, etc. [45], which also justifies the fewer recurrent
components in this dataset compared to the rest (see Appendix A.1).
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Figure A.6: Same as Fig. 4.7 but for the Primary School.
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Figure A.7: Same as Fig. 4.7 but for the High School.

100 101 102

contact duration

10 6

10 4

10 2

100

di
st

rib
ut

io
n

(a)
Conference
Force-dir. Motion

101 102 103

time between consecutive contacts

10 5

10 4

10 3

10 2

10 1

di
st

rib
ut

io
n

(b)
Conference
Force-dir. Motion

100 101 102 103

weight
10 7

10 5

10 3

10 1

di
st

rib
ut

io
n

(c)
Conference
Force-dir. Motion

100 101 102 103

strength

10 5

10 4

10 3

10 2

di
st

rib
ut

io
n

(d)

Conference
Force-dir. Motion

100 101 102

node degree

101

102

103

av
er

ag
e 

st
re

ng
th

(e)

Conference
Force-dir. Motion

101

component size

10 5

10 4

10 3

10 2

10 1

100

di
st

rib
ut

io
n

(f)

Conference
Force-dir. Motion
non-metric

2.5 5.0 7.5 10.0 12.5 15.0
group size

0

2

4

6

8

10

12

av
er

ag
e 

to
ta

l d
ur

at
io

n

(g)
Conference
Force-dir. Motion

0 10 20 30 40 50 60
shortest path length

10 4

10 3

10 2

10 1

100

di
st

rib
ut

io
n

(h)
Conference
Force-dir. Motion
Attr. Model

Figure A.8: Same as Fig. 4.7 but for the Conference. Plot (h) also shows the corresponding
simulation results with the attractiveness model.
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Figure A.9: Same as Fig. 4.7 but for the MIT Social Evolution. In all plots the simulation results
are averages over 10 runs except from (h), which shows the results from one run as computing this
metric in this large dataset is computationally expensive.

A.3 SIS spreading in real and modeled networks
with the FDM

Here we provide more details on the susceptible-infected-susceptible (SIS) epidemic
spreading model [51] considered in Chapter 4. In the SIS model each agent can be
in one of two states at any time slot t, susceptible (S) or infected (I). At any time
slot an infected agent recovers with probability β and becomes susceptible again,
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whereas infected agents infect the susceptible agents with whom they interact, with
probability α. Therefore, the only transition of states is S→ I→ S.

To obtain the results in Fig. 4.3 we have used the dSIS (dynamic SIS) model for
temporal networks from the Network Diffusion Library [90]. For each simulation of
the process we compute the percentage of infected agents per slot, and then take
the average of this percentage over the considered slots (prevalence). We consider
the first activity cycle of the Hospital and Primary school and the second cycle of
the High School—we consider the second cycle of the High School as its first cycle
has fewer recorded slots than the rest of its cycles (Sec. 3.1). In all cases the results
are similar in all activity cycles of similar durations. The corresponding simulated
networks with the FDM (Table 4.2) are run (after τwarmup) for the same duration
as the corresponding cycles in the real networks and the prevalence is measured
excluding the τwarmup period. In the real networks the results are averages over 20
simulated SIS processes. The results with the FDM are averages across 10 simulated
counterparts of each real network; in each counterpart the prevalence is averaged over
5 SIS processes. In all cases each SIS process has a different initial set of infected
agents that consists of 10% of all agents selected at random.

In Fig. A.10 we also report prevalence results for the Conference (first activity
cycle). As can be seen, in this case the SIS process performs differently than in the
corresponding FDM networks. This was expected since as explained in Sec. A.2 this
dataset has some different properties from the rest of the datasets we consider (cf.
Fig. A.8h and the related discussion in Sec. A.2).
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Figure A.10: Same as Fig. 4.3 but for the Conference dataset.

A.4 Network properties and recurrent components
with effective distances
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Figure A.11: Same as Fig. 4.17 but for the Primary School.

0 100 200 300
Time in minutes

0

200

400

600

800

Co
m

po
ne

nt
 ID

(a)
Force-dir. Motion 

 High School 
 Cycle 1

0 200 400
Time in minutes

0

200

400

600

800

1000

1200
Co

m
po

ne
nt

 ID
(b)

Force-dir. Motion 
 High School 
 Cycle 2

0 200 400
Time in minutes

0

200

400

600

800

1000

1200

Co
m

po
ne

nt
 ID

(c)
Force-dir. Motion 

 High School 
 Cycle 3

0 200 400
Time in minutes

0

200

400

600

800

1000

1200

Co
m

po
ne

nt
 ID

(d)
Force-dir. Motion 

 High School 
 Cycle 4

0 200 400
Time in minutes

0

250

500

750

1000

1250

Co
m

po
ne

nt
 ID

(e)
Force-dir. Motion 

 High School 
 Cycle 5

102 103 104

number of interactions

100

101

102

103
av

e.
 n

um
. o

f r
ec

ur
re

nt
 c

om
po

ne
nt

s (f)
High School
Force-dir. Motion

Figure A.12: Same as Fig. 4.17 but for the High School.
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Figure A.13: Same as Fig. 4.17 but for the Conference.
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Figure A.14: Same as Fig. 4.18 but for the Primary School.
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Figure A.15: Same as Fig. 4.18 but for the High School.
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Figure A.16: Same as Fig. 4.18 but for the Conference.
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Appendix B

More results with the
dynamic-S1 model
B.1 COVID-19 SEIR simulations with

non-normalized data.

In Fig. B.1 we present the properties of the synthetic networks generated with
the dynamic-S1 from the non-normalized survey of daily contacts in Cyprus [5]
(unpublished dataset). Whereas in Fig. B.2 we show the plots of total cases, daily
new cases and active cases per day produced by the SEIR simulations with the
COVID-19 parameters as described in Section 5.7, but using the synthetic networks
generated from the non-normalized data. Fig. B.3 corresponds to the daily new cases
originated in each setting: work, home or elsewhere.
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Figure B.1: Same as Fig. 5.17 but for the synthetic networks generated from the non-normalized
data.
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B. More results with the dynamic-S1 model
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Figure B.2: Same as Fig. 5.18 but for the synthetic network generated from the non-normalize
data.
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Figure B.3: Same as Fig. 5.19 but for the synthetic network generated from the non-normalized
data.

B.2 dynamic-S1 vs. configuration model
The dynamic-S1 utilizes the S1 model at the cold regime where the temperature is
T < 1 (Sec. 5.1). The S1 can be also defined at the hot regime, T > 1 [55].

Like traditional complex networks [55], proximity networks appear to belong to
the cold regime. Indeed, as seen in Table 5.2, all counterparts have T < 1. Further,
Fig. 5.16 shows that the number of recurrent components quickly decreases with
T ∈ (0, 1), becoming small at T → 1, while real networks have large numbers of
recurrent components (cf. Figs. 5.5(h), 5.6(h) and [87]).

Analyzing the dynamic-S1 at the hot regime is beyond the scope of this paper.
However, we consider here a limiting case at this regime, where the S1 model
degenerates to the configuration model, i.e., to the ensemble of graphs with given
expected degrees [17, 80]. This case corresponds to letting T →∞, while completely
ignoring the angular distances among the nodes, see [55] for details. The connection
probability between two nodes i, j becomes

pcm(κi, κj) = 1
1 +Nκ̄2/(k̄κiκj)

. (B.1)

For sparse networks (k̄ � N) and distributions of κi that are not too broad
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dynamic-S1 vs. configuration model

(conditions that hold in the considered networks, Fig. 5.3), we can write pcm(κi, κj) ≈
k̄κiκj/(Nκ̄2). Using this approximation, it is easy to see that the expected degree
of a node with latent variable κ is given by (5.4), while the average degree in the
resulting network is k̄.

We now build synthetic counterparts for the real networks of Sec. 5.3.1 using the
dynamic-S1 as described in Secs. 5.2 and 5.3.2, except that we connect the nodes in
each snapshot with the connection probability in (B.1) [instead of (5.1)]. Since there
is no temperature T in (B.1), we can no longer control the average time-aggregated
degree, which is significantly larger in the counterparts, k̄aggr = 58, 214, 242, 76, 125,
for the hospital, primary school, high school, conference and Friends & Family,
respectively (vs. the ones in Table 5.1). As expected, we see in Fig. B.4 that
the configuration model cannot reproduce the abundance of recurrent components
observed in the real networks. Further, it cannot capture their broad contact,
inter-contact and weight distributions (Fig. B.4).

Hospital
CM
dynamic-S1

101 102 103 104

number of node interactions
100

101

102

103

av
e.

 re
c.

 c
om

p.

(a)
Hospital
CM
dynamic-S1

100 101 102

contact duration

10 6

10 4

10 2

100

pr
ob

ab
ilit

y

(b)

Hospital
CM
dynamic-S1

100 101 102 103

inter-contact duration

10 5

10 3

10 1
pr

ob
ab

ilit
y

(c)

Hospital
CM
dynamic-S1

100 101 102 103

weight

10 6

10 4

10 2

pr
ob

ab
ilit

y

(d)

Primary School
CM
dynamic-S1

102 103

number of node interactions
100

101

102

103

av
e.

 re
c.

 c
om

p.

(e)

Primary Sch.
CM
dynamic-S1

100 101 102

contact duration

10 6

10 4

10 2

100

pr
ob

ab
ilit

y

(f)
Primary School
CM
dynamic-S1

100 101 102 103

inter-contact duration

10 5

10 4

10 3

10 2

10 1

pr
ob

ab
ilit

y

(g) Primary Sch.
CM
dynamic-S1

100 101 102 103

weight

10 5

10 4

10 3

10 2

10 1

pr
ob

ab
ilit

y

(h)

High School
CM
dynamic-S1

101 102 103 104

number of node interactions

100

101

102

103

av
e.

 re
c.

 c
om

p.

(i)
High School
CM
dynamic-S1

100 101 102

contact duration

10 6

10 4

10 2

100

pr
ob

ab
ilit

y

(j)

High School
CM
dynamic-S1

100 101 102 103

inter-contact duration

10 8

10 6

10 4

10 2

pr
ob

ab
ilit

y

(k) High School
CM
dynamic-S1

100 101 102 103

weight

10 5

10 3

10 1

pr
ob

ab
ilit

y

(l)

Conference
CM
dynamic-S1

101 102 103

number of node interactions
100

101

102

103

av
e.

 re
c.

 c
om

p.

(m)
Conference
CM
dynamic-S1

100 101 102

contact duration

10 5

10 3

10 1

pr
ob

ab
ilit

y

(n)

Conference
CM
dynamic-S1

100 101 102 103

inter-contact duration

10 5

10 4

10 3

10 2

10 1

pr
ob

ab
ilit

y

(o)

Conference
CM
dynamic-S1

100 101 102 103

weight

10 5

10 3

10 1

pr
ob

ab
ilit

y

(p)

F & F
CM
dynamic-S1

102 104

number of node interactions
100

101

102

103

104

av
e.

 re
c.

 c
om

p.

(q)

F & F
CM
dynamic-S1

100 102 104

contact duration

10 8

10 6

10 4

10 2

pr
ob

ab
ilit

y

(r)
F & F
CM
dynamic-S1

100 102 104

inter-contact duration

10 7

10 5

10 3

10 1

pr
ob

ab
ilit

y

(s)

F & F
CM
dynamic-S1

100 102 104

weight

10 5

10 3

10 1

pr
ob

ab
ilit

y

(t)

Figure B.4: Real face-to-face interaction networks vs. simulated networks with the configuration
model (CM). (a,e,i,m,q) Average number of recurrent components where an agent participates
as a function of the total number of interactions of the agent. (b,f,j,n,r) Contact distribution.
(c,g,k,o,s) Inter-contact distribution. (d,h,l,p,t) Weight distribution. For comparison the results
with the dynamic-S1 considered in Chapter 5 are also shown. The results with the models are
averages over 20 simulation runs except from the Friends & Family where the averages are over 5
runs.
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Appendix C

More results with hyperbolic
embeddings of human
proximity networks
C.1 Connection probability in the time-aggregated

network

10-3 10-1 101 103

χ̃

10-2

10-1

100

co
nn

ec
tio

n 
pr

ob
. a

Primary School
1/(1 + χ̃1/T)
1−

[
1− 1

1 + (αχ̃)1/T

]
τ

10-3 10-1 101

χ̃

10-3

10-2

10-1

100

co
nn

ec
tio

n 
pr

ob
. b

Conference
1/(1 + χ̃1/T)
1−

[
1− 1

1 + (αχ̃)1/T

]
τ

10-2 100 102

χ̃

10-4

10-3

10-2

10-1

100

co
nn

ec
tio

n 
pr

ob
. c

Office Building
1/(1 + χ̃1/T)
1−

[
1− 1

1 + (αχ̃)1/T

]
τ

Figure C.1: Connection probability in the time-aggregated network versus Fermi-Dirac
connection probability. Same as in Fig. 6.1 but for the synthetic counterparts of the primary
school, conference and office building.
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C. More results with hyperbolic embeddings of human proximity networks

C.2 Inference of latent coordinates with the
original and modified Mercator
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Figure C.2: Inference of latent coordinates (κ, θ) with the original and modified versions
of Mercator. Same as in Fig. 6.2 but for the synthetic counterparts of the high school, conference,
office building and Friends & Family. For the four networks, the original version estimates
T = 0.52, 0.72, 0.64 and 0.4, the modified version estimates T = 0.61, 0.86, 0.75 and 0.48, while the
actual values are T = 0.61, 0.85, 0.74 and 0.48, respectively.
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Hyperbolic maps of the conference and Friends & Family

C.3 Hyperbolic maps of the conference and
Friends & Family
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Figure C.3: Hyperbolic embeddings of the conference and Friends & Family. Same as in
Fig. 6.4 but for the conference and Friends & Family. In (a) all nodes have the same color as there
is no group membership information available for the conference. In (b) the nodes are colored
according to the partial apartment number or letter where they live, as given in the Friends &
Family metadata. The pink dashed lines in (c) and (d) are Fermi-Dirac connection probabilities
with temperatures T as inferred by Mercator, T = 0.98 and 0.84, respectively.

C.4 Human-to-human greedy routing
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Figure C.4: Success ratio ps of H2H-GR and H2H-RR as a function of the effective
distance χ̃ between source-destination pairs. Same as in Fig. 6.5 but for the high school,
office building and Friends & Family. The top row shows the results for the real networks, while
the bottom row shows the results for the synthetic counterparts.
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Figure C.5: Average stretch s̄ of H2H-GR and H2H-RR as a function of the effective
distance χ̃ between source-destination pairs. The results correspond to the networks of
Fig. C.4.

Real Network H2H-GR (current angular
coordinates)

H2H-GR (previous angu-
lar coordinates)

Hospital ps = 0.69, s̄ = 2.16 ps = 0.39, s̄ = 1.98
Primary School ps = 0.69, s̄ = 4.40 ps = 0.65, s̄ = 3.88
Conference ps = 0.55, s̄ = 2.25 ps = 0.35, s̄ = 2.11
High School ps = 0.20, s̄ = 2.12 ps = 0.10, s̄ = 1.84
Office Building ps = 0.11, s̄ = 1.42 ps = 0.09, s̄ = 1.39
Friends & Family ps = 0.42, s̄ = 2.20 ps = 0.28, s̄ = 2.03

Table C.1: Success ratio ps and average stretch s̄ of H2H-GR that uses only the angular
(similarity) distances in real networks. Same as in Table 6.2 but when using only the inferred
angular coordinates (current and previous) in H2H-GR.

Synthetic Network H2H-GR (current angular
coordinates)

H2H-GR (previous angu-
lar coordinates)

Hospital ps = 0.71, s̄ = 2.46 ps = 0.59, s̄ = 2.44
Primary School ps = 0.97, s̄ = 4.77 ps = 0.91, s̄ = 5.29
Conference ps = 0.70, s̄ = 2.83 ps = 0.51, s̄ = 2.77
High School ps = 0.35, s̄ = 2.93 ps = 0.25, s̄ = 2.90
Office Building ps = 0.13, s̄ = 1.66 ps = 0.10, s̄ = 1.61
Friends & Family ps = 0.58, s̄ = 2.58 ps = 0.49, s̄ = 2.47

Table C.2: Same as in Table C.1 but for the synthetic counterparts of the real systems.
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Stability of the inferred node coordinates in different days

C.5 Stability of the inferred node coordinates in
different days
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Figure C.6: Inferred node coordinates (κ, θ) from the time-aggregated network of
different observation days. The results correspond to real networks, and the considered days
are as in Table 6.2. (a) Inferred angles in day 4 versus inferred angles in day 5 in the hospital.
The numbers of time slots for days 4 and 5 are τ = 3889 and 2177, respectively, while Mercator’s
inferred temperature for the time-aggregated network is T = 0.99 for both days. (b) Inferred angles
in day 1 versus inferred angles in day 2 in the primary school. For days 1, 2, τ = 1555, 1545 and
T = 0.43, 0.36. (c) Inferred angles in day 2 versus inferred angles in day 3 in the conference. For
days 2, 3, τ = 3216, 1946 and T = 0.99, 0.98. (d-f) Same as in (a-c) but for the inferred latent
degrees κ. For each node, κ is estimated as κ = κ̃/α, where κ̃ is the node’s inferred latent degree in
the time-aggregated network of the corresponding day, while α = τT /Γ(1 + T ). Due to rotational
symmetry of the model, the inferred angles in a day can be globally shifted compared to the inferred
angles in another day by any value in [0, 2π].
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Figure C.7: Inferred node coordinates (κ, θ) from the time-aggregated network of
different days. Same as in Fig. C.6 but for the synthetic counterparts of the real systems.
The days in each counterpart have the same duration τ as in the corresponding real system. The
temperatures inferred by Mercator are T = 0.57 for both days of the hospital, T = 0.60, 0.64 for
days 1, 2 of the primary school, and T = 0.64 for both days of the conference.
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Figure C.8: Inferred node coordinates (κ, θ) from the time-aggregated network of
different observation days. Same as in Fig. C.6 but for the high school, office building and
Friends & Family. (a) Inferred angles in day 4 versus inferred angles in day 5 in the high school.
For days 4, 5, τ = 1619 and T = 0.54, 0.49. (b) Inferred angles in day 9 versus inferred angles in
day 10 in the office building. For days 9, 10, τ = 2153, 2148 and T = 0.57, 0.47. (c) Inferred angles
in the 30th of March, 2011 versus inferred angles in the 31st of March, 2011 in the Friends & Family.
For the two days, τ = 289 and T = 0.52, 0.49. (d-f) Same as in (a-c) but for the inferred latent
degrees κ.
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Figure C.9: Inferred node coordinates (κ, θ) from the time-aggregated network of
different days. Same as in Fig. C.8 but for the synthetic counterparts of the real systems.
The days in each counterpart have the same duration τ as in the corresponding real system. The
temperatures inferred by Mercator are T = 0.54 for both days of the high school, T = 0.68 for both
days of the office building, and T = 0.45, 0.43 for the two days of the Friends & Family.
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Figure C.10: Daily hyperbolic maps of the considered real systems. The maps correspond
to the days considered in Figs. C.6 and C.8. The nodes are positioned according to their inferred
hyperbolic coordinates (r, θ) in the time-aggregated network of the corresponding day. For an easier
inspection of how node coordinates change between days, the map of each day is rotated such that
it minimizes the sum of the squared distances between the inferred angles in the day and the angles
inferred by considering the full duration of the corresponding network (Fig. 6.4 and Fig. C.3). The
nodes are colored according to group membership information available in the metadata of each
network as described in Fig. 6.4 and in Fig. C.3.
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C.6 Link prediction: common neighbors
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Figure C.11: ROC and PR curves for geometric link prediction and common neighbors in real
networks. (a-f) show the ROC curves, while (g-l) the PR curves. The dashed black lines correspond
to link prediction based on chance.
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Figure C.12: Same as Fig. C.11 but for the synthetic networks.

C.7 Modified Mercator
In the modified version of Mercator we replace the connection probability of the S1

model [Eq. (5.1) in Chapter 5] with the connection probability in the time-aggregated
network of the dynamic-S1 model [Eq. (6.4) in Chapter 6]. This modification requires
replacing all relations in the original Mercator implementation, which are derived
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Modified Mercator

using the original connection probability, with the corresponding relations derived
using the new connection probability. Below we list all modifications made in each
step of the original Mercator implementation [32]. For convenience, we express all
new relations in terms of the nodes’ latent degrees per snapshot κ. We recall that
κ = κ̃/α, where κ̃ denotes the node’s latent degree in the time-aggregated network,
while α = τT/Γ(1 + T ). The modified Mercator takes also as input the value of the
duration τ in which the time-aggregated network is computed, while like the original
version it infers the value of the temperature parameter T along with the nodes’
coordinates (κ̃, θ).

In the first step, Mercator uses an iterative procedure that adjusts the nodes’
latent degrees so that the expected degree of each node as prescribed by the S1

model matches the node’s observed degree in the given network. We adapt this step
by replacing the relation for the probability that two nodes with latent degrees κ
and κ′ are connected [Eq. (A1) in Ref. [32]], with

p(aκκ′ = 1) =

1− 2µκκ′
N

TΓ(τ+T )Γ(−T )
Γ(τ) +

 1

1+
(

N
2µκκ′

)1/T


−T

2F1

−T, 1− τ − T ; 1− T ; 1

1+
(

N
2µκκ′

)1/T


 .

(C.1)

The above relation is derived in Sec. 5.5.4 in Chapter 5. aκκ′ is an indicator function,
aκκ′ = 1 if two nodes with latent degrees κ and κ′ are connected in the time-
aggregated network, and aκκ′ = 0 otherwise, µ = sin(Tπ)/(2κ̄Tπ), and 2F1(a, b; c; z)
is the Gauss hypergeometric function.

In the second step, Mercator uses an iterative procedure that adjusts the
temperature T so that the value of the average clustering coefficient as prescribed
by the S1 model matches the value of the average clustering coefficient in the given
network. We adapt this step by replacing the relation for the distribution of the
angular distance ∆θ between two connected nodes with latent degrees κ and κ′
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C. More results with hyperbolic embeddings of human proximity networks

[Eq. (A3) in Ref. [32]], with

ρ(∆θ|aκκ′ = 1) = p(aκκ′ = 1|∆θ)ρ(∆θ)
p(aκκ′ = 1)

=

1
π

1−

1− 1

1+
(
R∆θ
µκκ′

)1/T


τ

1− 2µκκ′
N

TΓ(τ+T )Γ(−T )
Γ(τ) +

 1

1+
(

N
2µκκ′

)1/T


−T

2F1

−T,1−τ−T ;1−T ; 1

1+
(

N
2µκκ′

)1/T



.

(C.2)

In the above relation, p(aκκ′ = 1|∆θ) is the probability that two nodes with latent
degrees κ and κ′ and angular distance ∆θ are connected in the time-aggregated
network, ρ(∆θ) = 1/π is the uniform distribution of the angular distances in the
model, and p(aκκ′ = 1) is given by (C.1).

In the third step, Mercator adapts Laplacian Eigenmaps (LE) to the S1 model
in order to determine initial angular coordinates for the nodes. We adapt this step
by replacing the relation for the expected angular distance between two nodes with
latent degrees κi and κj conditioned on the fact that they are connected [Eq. (A8)
in Ref. [32]], with

〈∆θij〉 =
∫ π

0
∆θijρ(∆θij|aκiκj = 1)d∆θij

=
NπΓ(τ)

[
τ+2T−2T

(
πR

µκiκj

)τ/T
2F1

(
τ,τ+2T ;τ+2T+1;−

(
πR

µκiκj

)1/T
)]

2(τ+2T )

N+2TµκiκjB(x;−T,τ+T )

Γ(τ)+2µκiκjΓ(1−T )Γ(τ+T )

 ,

(C.3)

where B(x; a, b) is the incomplete beta function and x = 1/
[
1 +

(
N

2µκiκj

)1/T
]
. In

this step, we also replace the probability in the S1 model of having the observed
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Aggregation interval and rotation of angular coordinates

connection (or disconnection) among each pair of consecutive nodes i and i+ 1 on
the similarity circle, conditioned on their angular separation gap gi and their latent
degrees κi and κj [Eq. (A13) in Ref. [32]], with

p(ai+1,i|gi) =1−

1− 1

1 +
(

Rgi
µκiκj

)1/T


τ

ai+1,i

×


1− 1

1 +
(

Rgi
µκiκj

)1/T


τ

1−ai+1,i

, (C.4)

where ai,i+1 = 1 if the two nodes are connected in the time-aggregated network, and
ai,i+1 = 0 otherwise.

In the fourth step, Mercator refines the initial angular coordinates by (approx-
imately) maximizing the likelihood that the given network is produced by the S1

model. We adapt this step by replacing the local log-likelihood for each node i
[Eq. (A20) in Ref. [32]], with

lnLi =

∑
j 6=i aij ln

1−

1− 1

1+
(
R∆θij
µκiκj

)1/T


τ+ (1− aij) ln


1− 1

1+
(
R∆θij
µκiκj

)1/T


τ ,

(C.5)

where aij = 1 if nodes i and j are connected in the time-aggregated network, and
aij = 0 otherwise.

In the final (optional) step, Mercator re-adjusts the latent degrees of the nodes
according to the inferred angular coordinates so that the expected degree of each
node indeed matches its observed degree in the given network. We adapt this step
by replacing the connection probability of the S1 model in Eq. (A21) in Ref. [32],
with the connection probability in the time-aggregated network of the dynamic-S1

model [Eq. 6.4 in Chapter 6].

C.8 Aggregation interval and rotation of angular
coordinates

In Fig. 6.3 in Chapter 6 we quantify the difference between inferred and real
coordinates as a function of the aggregation interval τ in a synthetic counterpart
of the primary school. In this section, Figs. C.13-C.17 correspond to the same
results but for synthetic counterparts of the hospital, conference, high school, office
building and Friends & Family. Specifically, each of Figs. C.13-C.17 shows the metrics
Dκ(τ), Dθ(τ) and d(τ) defined in the caption of Fig. 6.3 in Chapter 6. Further,
Figs. C.18-C.29 juxtapose the inferred against the real coordinates in each synthetic
counterpart, as a function of the aggregation interval τ .

Before computing Dθ(τ), we globally shift (rotate) the inferred angles such that
the sum of the squared distances (SSD) between real and rotated inferred angles is
minimized. To this end, we apply a Procrustean rotation (Ref. [89]), as follows:
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1. We transform the real and inferred angles {θireal} and {θiinferred} to Cartesian co-
ordinates {xi, yi} = {cos θireal, sin θireal} and {wi, zi} = {cos θiinferred, sin θiinferred}
for all nodes i = 1, . . . , N .1

2. A rotation of the points {wi, zi} by an angle φ is given by {ui, vi} = {wi cosφ−
zi sinφ,wi sinφ+ zi cosφ}, where ui, vi are the coordinates of the rotated point
wi, zi. The SSD between {ui, vi} and {xi, yi} is SSD = ∑N

i=1(ui−xi)2+(vi−yi)2.
The optimal rotation angle φ∗ is computed by taking the derivative of the SSD
with respect to φ and solving for φ when the derivative is zero,

φ∗ = tan−1
(∑N

i=1(wiyi − zixi)∑N
i=1(wixi + ziyi)

)
. (C.6)

We compute the optimally rotated inferred angles as {θirotated} =
{tan−1(v∗i /u∗i )}, where {u∗i , v∗i } = {wi cosφ∗ − zi sinφ∗, wi sinφ∗ + zi cosφ∗}.2

3. We repeat the above procedure after replacing {θiinferred} with {2π − θiinferred},
which is the reflection of the former across the x-axis, and compute the optimally
rotated inferred angles in this case as well, {θ̃irotated}.

4. We compute Dθ(τ) = ∑N
i=1 |θirotated − θireal|/N and D̃θ(τ) = ∑N

i=1 |θ̃irotated −
θireal|/N . The optimally rotated inferred angles are {θirotated} if Dθ(τ) < D̃θ(τ),
and {θ̃irotated} otherwise.

We follow a similar procedure for the rotations in Fig. C.10.
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Figure C.13: Inference accuracy vs. aggregation interval. Same as in Fig. 6.3 but
for a synthetic counterpart of the hospital. The vertical dashed lines indicate the interval
4000 ≤ τ ≤ 30000. In this interval, Dκ(τ) < 0.1, Dθ(τ) < 0.4, and 0.20 < d(τ) < 0.48.
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Figure C.14: Inference accuracy vs. aggregation interval. Same as in Fig. C.13 but
for a synthetic counterpart of the conference. The vertical dashed lines indicate the interval
2000 ≤ τ ≤ 50000. In this interval, Dκ(τ) < 0.1, Dθ(τ) < 0.4, and 0.09 < d(τ) < 0.47.

1Notation“{ }" denotes a set. For example, {xi, yi} = {x1, y1, x2, y2, . . . , xN , yN}.
2If θirotated < 0, then θirotated := 2π + θirotated.
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Figure C.15: Inference accuracy vs. aggregation interval. Same as in Fig. C.13 but for
a synthetic counterpart of the high school. The vertical dashed lines indicate the interval
2000 ≤ τ ≤ 100000. In this interval, Dκ(τ) < 0.1, Dθ(τ) < 0.2, and 0.01 < d(τ) < 0.18.
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Figure C.16: Inference accuracy vs. aggregation interval. Same as in Fig. C.13 but for
a synthetic counterpart of the office building. The vertical dashed lines indicate the interval
5000 ≤ τ ≤ 1000000. In this interval, Dκ(τ) < 0.1, Dθ(τ) < 0.3, and 0.03 < d(τ) < 0.55.
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Figure C.17: Inference accuracy vs. aggregation interval. Same as in Fig. C.13 but for
a synthetic counterpart of the friends & family. The vertical dashed lines indicate the interval
100 ≤ τ ≤ 4000. In this interval, Dκ(τ) < 0.3, Dθ(τ) < 0.2, and 0.05 < d(τ) < 0.26.
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Figure C.18: Inferred vs. real θ for different aggregation intervals τ . The results correspond
to the synthetic counterpart of the hospital. For each τ we also indicate the temperature T inferred
by Mercator. The diagonal dashed line indicates x = y.
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Figure C.19: Inferred vs. real κ for different aggregation intervals τ . The results correspond
to the synthetic counterpart of the hospital. The κinferred are estimated as described in the caption
of Fig. 6.2. For each τ we indicate the temperature T inferred by Mercator. The diagonal dashed
line indicates x = y.
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Figure C.20: Inferred vs. real θ for different aggregation intervals τ . Same as in Fig. C.18
but for the synthetic counterpart of the primary school.
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Figure C.21: Inferred vs. real κ for different aggregation intervals τ . Same as in Fig. C.19
but for the synthetic counterpart of the primary school.
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C. More results with hyperbolic embeddings of human proximity networks
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Figure C.22: Inferred vs. real θ for different aggregation intervals τ . Same as in Fig. C.18
but for the synthetic counterpart of the conference.
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Figure C.23: Inferred vs. real κ for different aggregation intervals τ . Same as Fig. C.19
but for the synthetic counterpart of the conference.
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C. More results with hyperbolic embeddings of human proximity networks
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Figure C.24: Inferred vs. real θ for different aggregation intervals τ . Same as in Fig. C.18
but for the synthetic counterpart of the high school.
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Figure C.25: Inferred vs. real κ for different aggregation intervals τ . Same as in Fig. C.19
but for the synthetic counterpart of the high school.
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C. More results with hyperbolic embeddings of human proximity networks
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Figure C.26: Inferred vs. real θ for different aggregation intervals τ . Same as in Fig. C.18
but for the synthetic counterpart of the office building.
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Figure C.27: Inferred vs. real κ for different aggregation intervals τ . Same as in Fig. C.19
but for the synthetic counterpart of the office building.
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C. More results with hyperbolic embeddings of human proximity networks
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Figure C.28: Inferred vs. real θ for different aggregation intervals τ . Same as in Fig. C.18
but for the synthetic counterpart of the Friends & Family.
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Figure C.29: Inferred vs. real κ for different aggregation intervals τ . Same as in Fig. C.19
but for the synthetic counterpart of the Friends & Family.
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